Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# import gradio as gr
|
2 |
# from huggingface_hub import InferenceClient
|
3 |
|
@@ -63,34 +97,3 @@
|
|
63 |
# if __name__ == "__main__":
|
64 |
# demo.launch()
|
65 |
|
66 |
-
import gradio as gr
|
67 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
68 |
-
|
69 |
-
# Load NVLM-D-72B model and tokenizer
|
70 |
-
model_name = "nvidia/NVLM-D-72B"
|
71 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
72 |
-
model = AutoModelForCausalLM.from_pretrained(
|
73 |
-
model_name,
|
74 |
-
trust_remote_code=True,
|
75 |
-
device_map="auto"
|
76 |
-
)
|
77 |
-
|
78 |
-
# Inference function
|
79 |
-
def generate_response(prompt, max_tokens=50):
|
80 |
-
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") # Adjust to "cpu" if GPU unavailable
|
81 |
-
outputs = model.generate(**inputs, max_new_tokens=max_tokens)
|
82 |
-
return tokenizer.decode(outputs[0])
|
83 |
-
|
84 |
-
# Gradio interface
|
85 |
-
interface = gr.Interface(
|
86 |
-
fn=generate_response,
|
87 |
-
inputs=[
|
88 |
-
gr.Textbox(lines=2, label="Enter your prompt"),
|
89 |
-
gr.Slider(10, 100, step=10, value=50, label="Max Tokens")
|
90 |
-
],
|
91 |
-
outputs="text",
|
92 |
-
title="NVIDIA NVLM-D-72B Demo",
|
93 |
-
description="Generate text using NVIDIA's NVLM-D-72B model."
|
94 |
-
)
|
95 |
-
if __name__ == "__main__":
|
96 |
-
interface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Load NVLM-D-72B model and tokenizer
|
5 |
+
# model_name = "nvidia/NVLM-D-72B"
|
6 |
+
model_name = "nvidia/NVLM-D-7B"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(
|
9 |
+
model_name,
|
10 |
+
trust_remote_code=True,
|
11 |
+
device_map="auto"
|
12 |
+
)
|
13 |
+
|
14 |
+
# Inference function
|
15 |
+
def generate_response(prompt, max_tokens=50):
|
16 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") # Adjust to "cpu" if GPU unavailable
|
17 |
+
outputs = model.generate(**inputs, max_new_tokens=max_tokens)
|
18 |
+
return tokenizer.decode(outputs[0])
|
19 |
+
|
20 |
+
# Gradio interface
|
21 |
+
interface = gr.Interface(
|
22 |
+
fn=generate_response,
|
23 |
+
inputs=[
|
24 |
+
gr.Textbox(lines=2, label="Enter your prompt"),
|
25 |
+
gr.Slider(10, 100, step=10, value=50, label="Max Tokens")
|
26 |
+
],
|
27 |
+
outputs="text",
|
28 |
+
title="NVIDIA NVLM-D-72B Demo",
|
29 |
+
description="Generate text using NVIDIA's NVLM-D-72B model."
|
30 |
+
)
|
31 |
+
if __name__ == "__main__":
|
32 |
+
interface.launch()
|
33 |
+
|
34 |
+
|
35 |
# import gradio as gr
|
36 |
# from huggingface_hub import InferenceClient
|
37 |
|
|
|
97 |
# if __name__ == "__main__":
|
98 |
# demo.launch()
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|