Abhinay45's picture
Update app.py
f86737b verified
import spaces
import gradio as gr
import torch
from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
from string import punctuation
import re
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
device = "cuda:0" if torch.cuda.is_available() else "cpu"
repo_id = "parler-tts/parler-tts-mini-expresso"
model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
tokenizer = AutoTokenizer.from_pretrained(repo_id)
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
SAMPLE_RATE = feature_extractor.sampling_rate
SEED = 42
default_text = "*Remember* - this is only the first iteration of the model! To improve the prosody and naturalness of the speech further, I am scaling up the amount of *training data*."
default_description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
examples = [
[
"*Remember* - this is only the first iteration of the model! To improve the prosody and naturalness of the speech further, I am scaling up the amount of *training data*.",
"Thomas speaks in a sad tone at a moderate pace with high quality."
],
[
"Did you know? You can reproduce this entire training recipe by following the steps outlined on the model card!",
"Talia speaks quickly with excitement and high quality audio.",
],
[
"But that's no secret! The entire project is open source first, with all release artefacts on the Hub.",
"Elisabeth speaks happily at a slightly slower than average pace with high quality audio.",
],
[
"Hey there! I'm Jerry. Or at least I think I am? I just need to check that quickly.",
"Jerry speaks in a confused tone at a moderately slow pace with high quality audio.",
],
[
"<laugh> It can even laugh! Do you believe it ? I don't!",
"Talia speaks with laughter with high quality.",
],
]
number_normalizer = EnglishNumberNormalizer()
def preprocess(text):
text = number_normalizer(text).strip()
if text[-1] not in punctuation:
text = f"{text}."
abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'
def separate_abb(chunk):
chunk = chunk.replace(".", "")
print(chunk)
return " ".join(chunk)
abbreviations = re.findall(abbreviations_pattern, text)
for abv in abbreviations:
if abv in text:
text = text.replace(abv, separate_abb(abv))
return text
@spaces.GPU
def gen_tts(text, description):
inputs = tokenizer(description, return_tensors="pt").to(device)
prompt = tokenizer(preprocess(text), return_tensors="pt").to(device)
set_seed(SEED)
generation = model.generate(input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids)
audio_arr = generation.cpu().numpy().squeeze()
return SAMPLE_RATE, audio_arr
css = """
#share-btn-container {
display: flex;
padding-left: 0.5rem !important;
padding-right: 0.5rem !important;
background-color: #000000;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
width: 13rem;
margin-top: 10px;
margin-left: auto;
flex: unset !important;
}
#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor: pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important;
padding-top: 0.25rem !important;
padding-bottom: 0.25rem !important;
right:0;
}
#share-btn * {
all: unset !important;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
"""
with gr.Blocks(css=css) as block:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
SML Emotional TTS- Hiring Project Assignment
</h1>
</div>
</div>
"""
)
gr.HTML(
f"""
<p><a href="https://huggingface.co/parler-tts/parler-tts-mini-expresso"> Parler-TTS Mini: Expresso</a>
is a text-to-speech (TTS) model fine-tuned on the <a href="https://huggingface.co/datasets/ylacombe/expresso"> Expresso dataset</a>.
It generates high-quality speech in a given <b>emotion</b> and <b>voice</b> that can be controlled through a simple text prompt.</p>
<p>Tips for ensuring good generation:
<ul>
<li>Specify the name of a male speaker (Jerry, Thomas) or female speaker (Talia, Elisabeth) for consistent voices</li>
<li>The model can generate in a range of emotions, including: "happy", "confused", "default" (meaning no particular emotion conveyed), "laughing", "sad", "whisper", "emphasis"</li>
<li>Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech</li>
<li>To emphasise particular words, wrap them in asterisk (e.g. *you* in the example above) and include "emphasis" in the prompt</li>
</ul>
</p>
"""
)
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text")
description = gr.Textbox(label="Description", lines=2, value=default_description, elem_id="input_description")
run_button = gr.Button("Generate Audio", variant="primary")
with gr.Column():
audio_out = gr.Audio(label="Parler-TTS generation", type="numpy", elem_id="audio_out")
inputs = [input_text, description]
outputs = [audio_out]
gr.Examples(examples=examples, fn=gen_tts, inputs=inputs, outputs=outputs, cache_examples=True)
run_button.click(fn=gen_tts, inputs=inputs, outputs=outputs, queue=True)
gr.HTML(
"""
<p></p>
"""
)
block.queue()
block.launch(share=True)