Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
torch.backends.cudnn.benchmark = True
|
7 |
+
from torchvision import transforms, utils
|
8 |
+
from util import *
|
9 |
+
from PIL import Image
|
10 |
+
import math
|
11 |
+
import random
|
12 |
+
import numpy as np
|
13 |
+
from torch import nn, autograd, optim
|
14 |
+
from torch.nn import functional as F
|
15 |
+
from tqdm import tqdm
|
16 |
+
import lpips
|
17 |
+
from model import *
|
18 |
+
|
19 |
+
|
20 |
+
#from e4e_projection import projection as e4e_projection
|
21 |
+
|
22 |
+
from copy import deepcopy
|
23 |
+
import imageio
|
24 |
+
|
25 |
+
import os
|
26 |
+
import sys
|
27 |
+
import numpy as np
|
28 |
+
from PIL import Image
|
29 |
+
import torch
|
30 |
+
import torchvision.transforms as transforms
|
31 |
+
from argparse import Namespace
|
32 |
+
from e4e.models.psp import pSp
|
33 |
+
from util import *
|
34 |
+
from huggingface_hub import hf_hub_download
|
35 |
+
|
36 |
+
device= 'cpu'
|
37 |
+
model_path_e = hf_hub_download(repo_id="akhaliq/JoJoGAN_e4e_ffhq_encode", filename="e4e_ffhq_encode.pt")
|
38 |
+
ckpt = torch.load(model_path_e, map_location='cpu')
|
39 |
+
opts = ckpt['opts']
|
40 |
+
opts['checkpoint_path'] = model_path_e
|
41 |
+
opts= Namespace(**opts)
|
42 |
+
net = pSp(opts, device).eval().to(device)
|
43 |
+
|
44 |
+
@ torch.no_grad()
|
45 |
+
def projection(img, name, device='cuda'):
|
46 |
+
|
47 |
+
|
48 |
+
transform = transforms.Compose(
|
49 |
+
[
|
50 |
+
transforms.Resize(256),
|
51 |
+
transforms.CenterCrop(256),
|
52 |
+
transforms.ToTensor(),
|
53 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
|
54 |
+
]
|
55 |
+
)
|
56 |
+
img = transform(img).unsqueeze(0).to(device)
|
57 |
+
images, w_plus = net(img, randomize_noise=False, return_latents=True)
|
58 |
+
result_file = {}
|
59 |
+
result_file['latent'] = w_plus[0]
|
60 |
+
torch.save(result_file, name)
|
61 |
+
return w_plus[0]
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
device = 'cpu'
|
67 |
+
|
68 |
+
|
69 |
+
latent_dim = 512
|
70 |
+
|
71 |
+
model_path_s = hf_hub_download(repo_id="akhaliq/jojogan-stylegan2-ffhq-config-f", filename="stylegan2-ffhq-config-f.pt")
|
72 |
+
original_generator = Generator(1024, latent_dim, 8, 2).to(device)
|
73 |
+
ckpt = torch.load(model_path_s, map_location=lambda storage, loc: storage)
|
74 |
+
original_generator.load_state_dict(ckpt["g_ema"], strict=False)
|
75 |
+
mean_latent = original_generator.mean_latent(10000)
|
76 |
+
|
77 |
+
generatorjojo = deepcopy(original_generator)
|
78 |
+
|
79 |
+
generatordisney = deepcopy(original_generator)
|
80 |
+
|
81 |
+
generatorjinx = deepcopy(original_generator)
|
82 |
+
|
83 |
+
generatorcaitlyn = deepcopy(original_generator)
|
84 |
+
|
85 |
+
generatoryasuho = deepcopy(original_generator)
|
86 |
+
|
87 |
+
generatorarcanemulti = deepcopy(original_generator)
|
88 |
+
|
89 |
+
generatorart = deepcopy(original_generator)
|
90 |
+
|
91 |
+
generatorspider = deepcopy(original_generator)
|
92 |
+
|
93 |
+
generatorsketch = deepcopy(original_generator)
|
94 |
+
|
95 |
+
|
96 |
+
transform = transforms.Compose(
|
97 |
+
[
|
98 |
+
transforms.Resize((1024, 1024)),
|
99 |
+
transforms.ToTensor(),
|
100 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
101 |
+
]
|
102 |
+
)
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
modeljojo = hf_hub_download(repo_id="akhaliq/JoJoGAN-jojo", filename="jojo_preserve_color.pt")
|
108 |
+
|
109 |
+
|
110 |
+
ckptjojo = torch.load(modeljojo, map_location=lambda storage, loc: storage)
|
111 |
+
generatorjojo.load_state_dict(ckptjojo["g"], strict=False)
|
112 |
+
|
113 |
+
|
114 |
+
modeldisney = hf_hub_download(repo_id="akhaliq/jojogan-disney", filename="disney_preserve_color.pt")
|
115 |
+
|
116 |
+
ckptdisney = torch.load(modeldisney, map_location=lambda storage, loc: storage)
|
117 |
+
generatordisney.load_state_dict(ckptdisney["g"], strict=False)
|
118 |
+
|
119 |
+
|
120 |
+
modeljinx = hf_hub_download(repo_id="akhaliq/jojo-gan-jinx", filename="arcane_jinx_preserve_color.pt")
|
121 |
+
|
122 |
+
ckptjinx = torch.load(modeljinx, map_location=lambda storage, loc: storage)
|
123 |
+
generatorjinx.load_state_dict(ckptjinx["g"], strict=False)
|
124 |
+
|
125 |
+
|
126 |
+
modelcaitlyn = hf_hub_download(repo_id="akhaliq/jojogan-arcane", filename="arcane_caitlyn_preserve_color.pt")
|
127 |
+
|
128 |
+
ckptcaitlyn = torch.load(modelcaitlyn, map_location=lambda storage, loc: storage)
|
129 |
+
generatorcaitlyn.load_state_dict(ckptcaitlyn["g"], strict=False)
|
130 |
+
|
131 |
+
|
132 |
+
modelyasuho = hf_hub_download(repo_id="akhaliq/JoJoGAN-jojo", filename="jojo_yasuho_preserve_color.pt")
|
133 |
+
|
134 |
+
ckptyasuho = torch.load(modelyasuho, map_location=lambda storage, loc: storage)
|
135 |
+
generatoryasuho.load_state_dict(ckptyasuho["g"], strict=False)
|
136 |
+
|
137 |
+
|
138 |
+
model_arcane_multi = hf_hub_download(repo_id="akhaliq/jojogan-arcane", filename="arcane_multi_preserve_color.pt")
|
139 |
+
|
140 |
+
ckptarcanemulti = torch.load(model_arcane_multi, map_location=lambda storage, loc: storage)
|
141 |
+
generatorarcanemulti.load_state_dict(ckptarcanemulti["g"], strict=False)
|
142 |
+
|
143 |
+
|
144 |
+
modelart = hf_hub_download(repo_id="akhaliq/jojo-gan-art", filename="art.pt")
|
145 |
+
|
146 |
+
ckptart = torch.load(modelart, map_location=lambda storage, loc: storage)
|
147 |
+
generatorart.load_state_dict(ckptart["g"], strict=False)
|
148 |
+
|
149 |
+
|
150 |
+
modelSpiderverse = hf_hub_download(repo_id="akhaliq/jojo-gan-spiderverse", filename="Spiderverse-face-500iters-8face.pt")
|
151 |
+
|
152 |
+
ckptspider = torch.load(modelSpiderverse, map_location=lambda storage, loc: storage)
|
153 |
+
generatorspider.load_state_dict(ckptspider["g"], strict=False)
|
154 |
+
|
155 |
+
modelSketch = hf_hub_download(repo_id="akhaliq/jojogan-sketch", filename="sketch_multi.pt")
|
156 |
+
|
157 |
+
ckptsketch = torch.load(modelSketch, map_location=lambda storage, loc: storage)
|
158 |
+
generatorsketch.load_state_dict(ckptsketch["g"], strict=False)
|
159 |
+
|
160 |
+
def inference(img, model):
|
161 |
+
img.save('out.jpg')
|
162 |
+
aligned_face = align_face('out.jpg')
|
163 |
+
|
164 |
+
my_w = projection(aligned_face, "test.pt", device).unsqueeze(0)
|
165 |
+
if model == 'JoJo':
|
166 |
+
with torch.no_grad():
|
167 |
+
my_sample = generatorjojo(my_w, input_is_latent=True)
|
168 |
+
elif model == 'Disney':
|
169 |
+
with torch.no_grad():
|
170 |
+
my_sample = generatordisney(my_w, input_is_latent=True)
|
171 |
+
elif model == 'Jinx':
|
172 |
+
with torch.no_grad():
|
173 |
+
my_sample = generatorjinx(my_w, input_is_latent=True)
|
174 |
+
elif model == 'Caitlyn':
|
175 |
+
with torch.no_grad():
|
176 |
+
my_sample = generatorcaitlyn(my_w, input_is_latent=True)
|
177 |
+
elif model == 'Yasuho':
|
178 |
+
with torch.no_grad():
|
179 |
+
my_sample = generatoryasuho(my_w, input_is_latent=True)
|
180 |
+
elif model == 'Arcane Multi':
|
181 |
+
with torch.no_grad():
|
182 |
+
my_sample = generatorarcanemulti(my_w, input_is_latent=True)
|
183 |
+
elif model == 'Art':
|
184 |
+
with torch.no_grad():
|
185 |
+
my_sample = generatorart(my_w, input_is_latent=True)
|
186 |
+
elif model == 'Spider-Verse':
|
187 |
+
with torch.no_grad():
|
188 |
+
my_sample = generatorspider(my_w, input_is_latent=True)
|
189 |
+
else:
|
190 |
+
with torch.no_grad():
|
191 |
+
my_sample = generatorsketch(my_w, input_is_latent=True)
|
192 |
+
|
193 |
+
|
194 |
+
npimage = my_sample[0].permute(1, 2, 0).detach().numpy()
|
195 |
+
imageio.imwrite('filename.jpeg', npimage)
|
196 |
+
return 'filename.jpeg'
|
197 |
+
|
198 |
+
title = "JoJoGAN"
|
199 |
+
description = "Gradio Demo for JoJoGAN: One Shot Face Stylization. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
|
200 |
+
|
201 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.11641' target='_blank'>JoJoGAN: One Shot Face Stylization</a>| <a href='https://github.com/mchong6/JoJoGAN' target='_blank'>Github Repo Pytorch</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_jojogan' alt='visitor badge'></center>"
|
202 |
+
|
203 |
+
examples=[['mona.png','Jinx']]
|
204 |
+
gr.Interface(inference, [gr.inputs.Image(type="pil"),gr.inputs.Dropdown(choices=['JoJo', 'Disney','Jinx','Caitlyn','Yasuho','Arcane Multi','Art','Spider-Verse','Sketch'], type="value", default='JoJo', label="Model")], gr.outputs.Image(type="file"),title=title,description=description,article=article,allow_flagging=False,examples=examples,allow_screenshot=False).launch()
|