Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
import os
|
2 |
import time
|
|
|
3 |
import streamlit as st
|
4 |
from langchain_community.vectorstores import FAISS
|
5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
@@ -7,14 +7,13 @@ from langchain.prompts import PromptTemplate
|
|
7 |
from langchain.memory import ConversationBufferWindowMemory
|
8 |
from langchain.chains import ConversationalRetrievalChain
|
9 |
from langchain_together import Together
|
10 |
-
from footer import footer # Ensure this module is present in the working directory
|
11 |
-
from dotenv import load_dotenv
|
12 |
-
import os
|
13 |
|
14 |
-
|
15 |
-
st.set_page_config(page_title="AI Legal App", layout="centered")
|
16 |
|
17 |
-
#
|
|
|
|
|
|
|
18 |
col1, col2, col3 = st.columns([1, 30, 1])
|
19 |
with col2:
|
20 |
st.image("https://github.com/Nike-one/BharatLAW/blob/master/images/banner.png?raw=true", use_column_width=True)
|
@@ -29,7 +28,7 @@ def hide_hamburger_menu():
|
|
29 |
|
30 |
hide_hamburger_menu()
|
31 |
|
32 |
-
# Initialize session state
|
33 |
if "messages" not in st.session_state:
|
34 |
st.session_state.messages = []
|
35 |
|
@@ -47,29 +46,44 @@ db_retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
|
47 |
|
48 |
prompt_template = """
|
49 |
<s>[INST]
|
50 |
-
As a legal chatbot specializing in Indian
|
51 |
-
-
|
52 |
-
-
|
53 |
-
- Clarify any common misconceptions.
|
54 |
-
-
|
|
|
|
|
|
|
55 |
CONTEXT: {context}
|
56 |
CHAT HISTORY: {chat_history}
|
57 |
QUESTION: {question}
|
58 |
ANSWER:
|
|
|
|
|
|
|
|
|
|
|
59 |
</s>[INST]
|
60 |
"""
|
61 |
|
|
|
|
|
62 |
prompt = PromptTemplate(template=prompt_template,
|
63 |
input_variables=['context', 'question', 'chat_history'])
|
64 |
-
|
65 |
api_key = os.getenv('TOGETHER_API_KEY')
|
66 |
llm = Together(model="mistralai/Mixtral-8x22B-Instruct-v0.1", temperature=0.5, max_tokens=1024, together_api_key=api_key)
|
67 |
|
68 |
qa = ConversationalRetrievalChain.from_llm(llm=llm, memory=st.session_state.memory, retriever=db_retriever, combine_docs_chain_kwargs={'prompt': prompt})
|
69 |
|
70 |
def extract_answer(full_response):
|
71 |
-
"""Extracts the
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
def reset_conversation():
|
75 |
st.session_state.messages = []
|
@@ -79,28 +93,34 @@ for message in st.session_state.messages:
|
|
79 |
with st.chat_message(message["role"]):
|
80 |
st.write(message["content"])
|
81 |
|
82 |
-
|
|
|
83 |
if input_prompt:
|
84 |
with st.chat_message("user"):
|
85 |
st.markdown(f"**You:** {input_prompt}")
|
86 |
|
87 |
st.session_state.messages.append({"role": "user", "content": input_prompt})
|
88 |
with st.chat_message("assistant"):
|
89 |
-
with st.spinner("
|
90 |
result = qa.invoke(input=input_prompt)
|
91 |
message_placeholder = st.empty()
|
92 |
answer = extract_answer(result["answer"])
|
93 |
|
94 |
-
#
|
95 |
-
|
96 |
-
for
|
97 |
-
response
|
98 |
-
|
99 |
-
|
|
|
100 |
|
101 |
st.session_state.messages.append({"role": "assistant", "content": answer})
|
102 |
|
103 |
-
if st.button('🗑️ Reset Chat', on_click=reset_conversation):
|
104 |
st.experimental_rerun()
|
105 |
|
|
|
|
|
|
|
106 |
footer()
|
|
|
|
|
|
1 |
import time
|
2 |
+
import os
|
3 |
import streamlit as st
|
4 |
from langchain_community.vectorstores import FAISS
|
5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
7 |
from langchain.memory import ConversationBufferWindowMemory
|
8 |
from langchain.chains import ConversationalRetrievalChain
|
9 |
from langchain_together import Together
|
|
|
|
|
|
|
10 |
|
11 |
+
from footer import footer
|
|
|
12 |
|
13 |
+
# Set the Streamlit page configuration and theme
|
14 |
+
st.set_page_config(page_title="BharatLAW", layout="centered")
|
15 |
+
|
16 |
+
# Display the logo image
|
17 |
col1, col2, col3 = st.columns([1, 30, 1])
|
18 |
with col2:
|
19 |
st.image("https://github.com/Nike-one/BharatLAW/blob/master/images/banner.png?raw=true", use_column_width=True)
|
|
|
28 |
|
29 |
hide_hamburger_menu()
|
30 |
|
31 |
+
# Initialize session state for messages and memory
|
32 |
if "messages" not in st.session_state:
|
33 |
st.session_state.messages = []
|
34 |
|
|
|
46 |
|
47 |
prompt_template = """
|
48 |
<s>[INST]
|
49 |
+
As a legal chatbot specializing in the Indian Penal Code, you are tasked with providing highly accurate and contextually appropriate responses. Ensure your answers meet these criteria:
|
50 |
+
- Respond in a bullet-point format to clearly delineate distinct aspects of the legal query.
|
51 |
+
- Each point should accurately reflect the breadth of the legal provision in question, avoiding over-specificity unless directly relevant to the user's query.
|
52 |
+
- Clarify the general applicability of the legal rules or sections mentioned, highlighting any common misconceptions or frequently misunderstood aspects.
|
53 |
+
- Limit responses to essential information that directly addresses the user's question, providing concise yet comprehensive explanations.
|
54 |
+
- Avoid assuming specific contexts or details not provided in the query, focusing on delivering universally applicable legal interpretations unless otherwise specified.
|
55 |
+
- Conclude with a brief summary that captures the essence of the legal discussion and corrects any common misinterpretations related to the topic.
|
56 |
+
|
57 |
CONTEXT: {context}
|
58 |
CHAT HISTORY: {chat_history}
|
59 |
QUESTION: {question}
|
60 |
ANSWER:
|
61 |
+
- [Detail the first key aspect of the law, ensuring it reflects general application]
|
62 |
+
- [Provide a concise explanation of how the law is typically interpreted or applied]
|
63 |
+
- [Correct a common misconception or clarify a frequently misunderstood aspect]
|
64 |
+
- [Detail any exceptions to the general rule, if applicable]
|
65 |
+
- [Include any additional relevant information that directly relates to the user's query]
|
66 |
</s>[INST]
|
67 |
"""
|
68 |
|
69 |
+
|
70 |
+
|
71 |
prompt = PromptTemplate(template=prompt_template,
|
72 |
input_variables=['context', 'question', 'chat_history'])
|
73 |
+
|
74 |
api_key = os.getenv('TOGETHER_API_KEY')
|
75 |
llm = Together(model="mistralai/Mixtral-8x22B-Instruct-v0.1", temperature=0.5, max_tokens=1024, together_api_key=api_key)
|
76 |
|
77 |
qa = ConversationalRetrievalChain.from_llm(llm=llm, memory=st.session_state.memory, retriever=db_retriever, combine_docs_chain_kwargs={'prompt': prompt})
|
78 |
|
79 |
def extract_answer(full_response):
|
80 |
+
"""Extracts the answer from the LLM's full response by removing the instructional text."""
|
81 |
+
answer_start = full_response.find("Response:")
|
82 |
+
if answer_start != -1:
|
83 |
+
answer_start += len("Response:")
|
84 |
+
answer_end = len(full_response)
|
85 |
+
return full_response[answer_start:answer_end].strip()
|
86 |
+
return full_response
|
87 |
|
88 |
def reset_conversation():
|
89 |
st.session_state.messages = []
|
|
|
93 |
with st.chat_message(message["role"]):
|
94 |
st.write(message["content"])
|
95 |
|
96 |
+
|
97 |
+
input_prompt = st.chat_input("Say something...")
|
98 |
if input_prompt:
|
99 |
with st.chat_message("user"):
|
100 |
st.markdown(f"**You:** {input_prompt}")
|
101 |
|
102 |
st.session_state.messages.append({"role": "user", "content": input_prompt})
|
103 |
with st.chat_message("assistant"):
|
104 |
+
with st.spinner("Thinking 💡..."):
|
105 |
result = qa.invoke(input=input_prompt)
|
106 |
message_placeholder = st.empty()
|
107 |
answer = extract_answer(result["answer"])
|
108 |
|
109 |
+
# Initialize the response message
|
110 |
+
full_response = "⚠️ **_Gentle reminder: We generally ensure precise information, but do double-check._** \n\n\n"
|
111 |
+
for chunk in answer:
|
112 |
+
# Simulate typing by appending chunks of the response over time
|
113 |
+
full_response += chunk
|
114 |
+
time.sleep(0.02) # Adjust the sleep time to control the "typing" speed
|
115 |
+
message_placeholder.markdown(full_response + " |", unsafe_allow_html=True)
|
116 |
|
117 |
st.session_state.messages.append({"role": "assistant", "content": answer})
|
118 |
|
119 |
+
if st.button('🗑️ Reset All Chat', on_click=reset_conversation):
|
120 |
st.experimental_rerun()
|
121 |
|
122 |
+
|
123 |
+
|
124 |
+
# Define the CSS to style the footer
|
125 |
footer()
|
126 |
+
|