Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,25 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
|
4 |
-
# Load the tokenizer and model from local files
|
5 |
@st.cache_resource
|
6 |
def load_model():
|
7 |
-
|
8 |
-
|
|
|
9 |
return tokenizer, model
|
10 |
|
11 |
-
# Initialize the model and tokenizer
|
12 |
-
tokenizer, model = load_model()
|
13 |
-
|
14 |
-
# Set up Streamlit page configuration
|
15 |
st.set_page_config(page_title="Legal AI Chatbot", layout="centered")
|
16 |
-
|
17 |
st.title("Legal AI Chatbot")
|
18 |
-
st.write("This chatbot provides responses based on a legal language model.")
|
19 |
|
20 |
-
|
21 |
-
|
|
|
|
|
22 |
|
|
|
|
|
23 |
if user_input:
|
24 |
-
|
25 |
-
|
26 |
-
outputs = model.generate(inputs, max_length=150, num_return_sequences=1)
|
27 |
-
|
28 |
-
# Decode and display the output
|
29 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
30 |
st.text_area("Response:", response, height=200)
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
|
|
|
4 |
@st.cache_resource
|
5 |
def load_model():
|
6 |
+
model_dir = "./" # Ensure all files, including `vocab.txt`, are in this directory
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_dir)
|
9 |
return tokenizer, model
|
10 |
|
|
|
|
|
|
|
|
|
11 |
st.set_page_config(page_title="Legal AI Chatbot", layout="centered")
|
|
|
12 |
st.title("Legal AI Chatbot")
|
|
|
13 |
|
14 |
+
st.write("Interact with a legal AI chatbot powered by transformers.")
|
15 |
+
|
16 |
+
# Load tokenizer and model
|
17 |
+
tokenizer, model = load_model()
|
18 |
|
19 |
+
# User input for chatbot
|
20 |
+
user_input = st.text_input("Enter your legal query:")
|
21 |
if user_input:
|
22 |
+
inputs = tokenizer(user_input, return_tensors="pt")
|
23 |
+
outputs = model.generate(inputs["input_ids"], max_length=150)
|
|
|
|
|
|
|
24 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
25 |
st.text_area("Response:", response, height=200)
|