Abs6187 commited on
Commit
8f351ba
·
verified ·
1 Parent(s): 302d80d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +98 -18
app.py CHANGED
@@ -1,24 +1,104 @@
 
 
 
 
 
 
 
 
 
 
1
 
2
- import gradio
3
- from transformers import pipeline
4
 
5
- import groq
6
- import gradio
 
 
7
 
8
- groq.api_key = "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"
 
 
 
 
 
 
9
 
10
- messages = [{"role": "system", "content": "You are a Indian Lawyer and Gave Advice according to Indian constitution"}]
11
 
12
- def CustomChatGPT(user_input):
13
- messages.append({"role": "user", "content": user_input})
14
- response = groq.ChatCompletion.create(
15
- model = "gpt-3.5-turbo",
16
- messages = messages
17
- )
18
- ChatGPT_reply = response["choices"][0]["message"]["content"]
19
- messages.append({"role": "assistant", "content": ChatGPT_reply})
20
- return ChatGPT_reply
21
 
22
- iface = gradio.Interface(fn=CustomChatGPT, inputs = "text", outputs = "text", title = "AI Chat Bot for Legal Assistance This is Free version and if it doesnt work kindly contact at Email ID contact2abhaygupta@gmail.com")
23
- print(" This is Free version and if it doesnt work kindly contact at Email ID contact2abhaygupta@gmail.com")
24
- iface.launch(inline=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import time
3
+ import streamlit as st
4
+ from langchain_community.vectorstores import FAISS
5
+ from langchain_community.embeddings import HuggingFaceEmbeddings
6
+ from langchain.prompts import PromptTemplate
7
+ from langchain.memory import ConversationBufferWindowMemory
8
+ from langchain.chains import ConversationalRetrievalChain
9
+ from langchain_together import Together
10
+ from footer import footer # Ensure this module is present in the working directory
11
 
12
+ # Set Streamlit configuration
13
+ st.set_page_config(page_title="AI Legal App", layout="centered")
14
 
15
+ # Display a logo or banner (replace with a local image or URL)
16
+ col1, col2, col3 = st.columns([1, 30, 1])
17
+ with col2:
18
+ st.image("https://github.com/Nike-one/BharatLAW/blob/master/images/banner.png?raw=true", use_column_width=True)
19
 
20
+ def hide_hamburger_menu():
21
+ st.markdown("""
22
+ <style>
23
+ #MainMenu {visibility: hidden;}
24
+ footer {visibility: hidden;}
25
+ </style>
26
+ """, unsafe_allow_html=True)
27
 
28
+ hide_hamburger_menu()
29
 
30
+ # Initialize session state
31
+ if "messages" not in st.session_state:
32
+ st.session_state.messages = []
 
 
 
 
 
 
33
 
34
+ if "memory" not in st.session_state:
35
+ st.session_state.memory = ConversationBufferWindowMemory(k=2, memory_key="chat_history", return_messages=True)
36
+
37
+ @st.cache_resource
38
+ def load_embeddings():
39
+ """Load and cache the embeddings model."""
40
+ return HuggingFaceEmbeddings(model_name="law-ai/InLegalBERT")
41
+
42
+ embeddings = load_embeddings()
43
+ db = FAISS.load_local("ipc_embed_db", embeddings, allow_dangerous_deserialization=True)
44
+ db_retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 3})
45
+
46
+ prompt_template = """
47
+ <s>[INST]
48
+ As a legal chatbot specializing in Indian law, your responses must be concise and accurate:
49
+ - Provide bullet points summarizing key legal aspects.
50
+ - Avoid assumptions or overly specific advice unless requested.
51
+ - Clarify any common misconceptions.
52
+ - Keep responses aligned with general legal principles.
53
+ CONTEXT: {context}
54
+ CHAT HISTORY: {chat_history}
55
+ QUESTION: {question}
56
+ ANSWER:
57
+ </s>[INST]
58
+ """
59
+
60
+ prompt = PromptTemplate(template=prompt_template,
61
+ input_variables=['context', 'question', 'chat_history'])
62
+
63
+ api_key = os.getenv('TOGETHER_API_KEY')
64
+ llm = Together(model="mistralai/Mixtral-8x22B-Instruct-v0.1", temperature=0.5, max_tokens=1024, together_api_key=api_key)
65
+
66
+ qa = ConversationalRetrievalChain.from_llm(llm=llm, memory=st.session_state.memory, retriever=db_retriever, combine_docs_chain_kwargs={'prompt': prompt})
67
+
68
+ def extract_answer(full_response):
69
+ """Extracts the assistant's answer from the response."""
70
+ return full_response.strip()
71
+
72
+ def reset_conversation():
73
+ st.session_state.messages = []
74
+ st.session_state.memory.clear()
75
+
76
+ for message in st.session_state.messages:
77
+ with st.chat_message(message["role"]):
78
+ st.write(message["content"])
79
+
80
+ input_prompt = st.chat_input("Ask your legal query...")
81
+ if input_prompt:
82
+ with st.chat_message("user"):
83
+ st.markdown(f"**You:** {input_prompt}")
84
+
85
+ st.session_state.messages.append({"role": "user", "content": input_prompt})
86
+ with st.chat_message("assistant"):
87
+ with st.spinner("Analyzing..."):
88
+ result = qa.invoke(input=input_prompt)
89
+ message_placeholder = st.empty()
90
+ answer = extract_answer(result["answer"])
91
+
92
+ # Simulated typing effect
93
+ response = ""
94
+ for char in answer:
95
+ response += char
96
+ time.sleep(0.02)
97
+ message_placeholder.markdown(response + " |", unsafe_allow_html=True)
98
+
99
+ st.session_state.messages.append({"role": "assistant", "content": answer})
100
+
101
+ if st.button('🗑️ Reset Chat', on_click=reset_conversation):
102
+ st.experimental_rerun()
103
+
104
+ footer()