import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM # Load the tokenizer and model from local files @st.cache_resource def load_model(): tokenizer = AutoTokenizer.from_pretrained("./", config="config.json") model = AutoModelForCausalLM.from_pretrained("./") return tokenizer, model # Initialize the model and tokenizer tokenizer, model = load_model() # Set up Streamlit page configuration st.set_page_config(page_title="Legal AI Chatbot", layout="centered") st.title("Legal AI Chatbot") st.write("This chatbot provides responses based on a legal language model.") # User input user_input = st.text_input("Enter your query:") if user_input: # Tokenize and generate response inputs = tokenizer.encode(user_input, return_tensors="pt") outputs = model.generate(inputs, max_length=150, num_return_sequences=1) # Decode and display the output response = tokenizer.decode(outputs[0], skip_special_tokens=True) st.text_area("Response:", response, height=200)