File size: 2,135 Bytes
713bd0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# model.py
import tensorflow as tf
from ultralytics import YOLO
import numpy as np
from sklearn.preprocessing import StandardScaler

class SuspiciousActivityModel:
    def __init__(self, lstm_model_path, yolo_model_path):
        # Load YOLO model
        self.yolo_model = YOLO(yolo_model_path)
        # Load LSTM model
        self.lstm_model = tf.keras.models.load_model(lstm_model_path)
        self.scaler = StandardScaler()

    def extract_keypoints(self, frame):
        """
        Extracts normalized keypoints from a frame using YOLO pose model.
        """
        results = self.yolo_model(frame, verbose=False)
        for r in results:
            if r.keypoints is not None and len(r.keypoints) > 0:
                keypoints = r.keypoints.xyn.tolist()[0]
                flattened_keypoints = [kp for keypoint in keypoints for kp in keypoint[:2]]
                return flattened_keypoints
        return None

    def process_frame(self, frame):
        results = self.yolo_model(frame, verbose=False)

        for box in results[0].boxes:
            cls = int(box.cls[0])  # Class ID
            confidence = float(box.conf[0])

            if cls == 0 and confidence > 0.5:
                x1, y1, x2, y2 = map(int, box.xyxy[0])

                # Extract ROI for classification
                roi = frame[y1:y2, x1:x2]
                if roi.size > 0:
                    keypoints = self.extract_keypoints(roi)
                    if keypoints is not None and len(keypoints) > 0:
                        # Standardize and reshape keypoints for LSTM input
                        keypoints_scaled = self.scaler.fit_transform([keypoints])
                        keypoints_reshaped = keypoints_scaled.reshape((1, 1, len(keypoints)))

                        # Predict with LSTM model
                        prediction = (self.lstm_model.predict(keypoints_reshaped) > 0.5).astype(int)[0][0]

                        # Return label
                        return 'Suspicious' if prediction == 1 else 'Normal'
        return 'Normal'

    def detect_activity(self, frame):
        return self.process_frame(frame)