Update app.py
Browse files
app.py
CHANGED
@@ -2,50 +2,30 @@ import cv2
|
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
4 |
|
5 |
-
# Load
|
6 |
-
pose_detection = pipeline("object-detection", model="
|
7 |
-
suspicious_activity_detection = pipeline("text-classification", model="
|
8 |
|
9 |
-
# Function to process a single frame and predict suspicious activity
|
10 |
def process_frame(frame):
|
11 |
-
"""
|
12 |
-
Detect persons in the frame and determine if they exhibit suspicious behavior.
|
13 |
-
"""
|
14 |
results = pose_detection(frame)
|
15 |
|
16 |
for person in results:
|
17 |
-
if person['label'] == 'person'
|
18 |
x1, y1, x2, y2 = map(int, person['box'].values())
|
19 |
-
|
20 |
-
|
21 |
-
keypoints = person['keypoints']
|
22 |
-
keypoints_input = " ".join(map(str, [kp for point in keypoints for kp in point[:2]]))
|
23 |
-
|
24 |
-
# Predict suspicious activity
|
25 |
-
prediction = suspicious_activity_detection(keypoints_input)[0]['label']
|
26 |
-
color = (0, 0, 255) if prediction == "Suspicious" else (0, 255, 0)
|
27 |
-
label = 'Suspicious' if prediction == "Suspicious" else 'Normal'
|
28 |
-
|
29 |
-
# Annotate frame
|
30 |
-
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
|
31 |
-
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
32 |
-
else:
|
33 |
-
print("No keypoints found for detected person.")
|
34 |
return frame
|
35 |
|
36 |
-
# Gradio interface
|
37 |
def live_detection(frame):
|
38 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
39 |
processed_frame = process_frame(frame)
|
40 |
-
return
|
41 |
|
42 |
-
# Gradio UI
|
43 |
interface = gr.Interface(
|
44 |
fn=live_detection,
|
45 |
inputs=gr.Image(source="webcam", tool="editor", type="numpy"),
|
46 |
-
outputs=gr.Image(type="numpy"
|
47 |
-
live=True
|
48 |
-
description="Real-time Suspicious Activity Detection"
|
49 |
)
|
50 |
|
51 |
if __name__ == "__main__":
|
|
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
4 |
|
5 |
+
# Load YOLOv8 model and suspicious activity classification model
|
6 |
+
pose_detection = pipeline("object-detection", model="yolov8-pose") # Correct path if it's inside same folder.
|
7 |
+
suspicious_activity_detection = pipeline("text-classification", model="suspicious_activity_model")
|
8 |
|
|
|
9 |
def process_frame(frame):
|
|
|
|
|
|
|
10 |
results = pose_detection(frame)
|
11 |
|
12 |
for person in results:
|
13 |
+
if person['label'] == 'person':
|
14 |
x1, y1, x2, y2 = map(int, person['box'].values())
|
15 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
16 |
+
cv2.putText(frame, 'Detected', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
return frame
|
18 |
|
|
|
19 |
def live_detection(frame):
|
20 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
21 |
processed_frame = process_frame(frame)
|
22 |
+
return processed_frame
|
23 |
|
|
|
24 |
interface = gr.Interface(
|
25 |
fn=live_detection,
|
26 |
inputs=gr.Image(source="webcam", tool="editor", type="numpy"),
|
27 |
+
outputs=gr.Image(type="numpy"),
|
28 |
+
live=True
|
|
|
29 |
)
|
30 |
|
31 |
if __name__ == "__main__":
|