Update app.py
Browse files
app.py
CHANGED
@@ -23,10 +23,25 @@ def extract_keypoints(frame):
|
|
23 |
return flattened_keypoints
|
24 |
return None # Return None if no keypoints are detected
|
25 |
|
26 |
-
def
|
27 |
"""
|
28 |
-
Process
|
29 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
# Perform YOLO detection
|
31 |
results = yolo_model(frame, verbose=False)
|
32 |
for box in results[0].boxes:
|
@@ -57,15 +72,18 @@ def process_frame(frame):
|
|
57 |
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
|
58 |
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
59 |
else:
|
60 |
-
print("No valid keypoints detected for ROI. Skipping
|
61 |
else:
|
62 |
-
print("ROI size is zero. Skipping
|
63 |
|
64 |
-
|
|
|
|
|
|
|
65 |
|
66 |
-
def
|
67 |
"""
|
68 |
-
|
69 |
"""
|
70 |
# Open video capture
|
71 |
cap = cv2.VideoCapture(input_video)
|
@@ -85,11 +103,42 @@ def detect_suspicious_activity(input_video):
|
|
85 |
if not ret:
|
86 |
break
|
87 |
|
88 |
-
#
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
# Write processed frame to output video
|
92 |
-
out.write(
|
93 |
|
94 |
# Release resources
|
95 |
cap.release()
|
@@ -99,11 +148,17 @@ def detect_suspicious_activity(input_video):
|
|
99 |
|
100 |
# Create Gradio interface
|
101 |
iface = gr.Interface(
|
102 |
-
fn=
|
103 |
-
inputs=
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
title="Suspicious Activity Detection",
|
106 |
-
description="Upload
|
107 |
)
|
108 |
|
109 |
# Launch the interface
|
|
|
23 |
return flattened_keypoints
|
24 |
return None # Return None if no keypoints are detected
|
25 |
|
26 |
+
def process_input(input_media):
|
27 |
"""
|
28 |
+
Process either a video or an image for suspicious activity detection
|
29 |
"""
|
30 |
+
# Determine if input is a video or image path
|
31 |
+
is_video = input_media.lower().endswith(('.mp4', '.avi', '.mov'))
|
32 |
+
|
33 |
+
if is_video:
|
34 |
+
return process_video(input_media)
|
35 |
+
else:
|
36 |
+
return process_image(input_media)
|
37 |
+
|
38 |
+
def process_image(image_path):
|
39 |
+
"""
|
40 |
+
Process a single image for suspicious activity detection
|
41 |
+
"""
|
42 |
+
# Read the image
|
43 |
+
frame = cv2.imread(image_path)
|
44 |
+
|
45 |
# Perform YOLO detection
|
46 |
results = yolo_model(frame, verbose=False)
|
47 |
for box in results[0].boxes:
|
|
|
72 |
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
|
73 |
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
74 |
else:
|
75 |
+
print("No valid keypoints detected for ROI. Skipping.")
|
76 |
else:
|
77 |
+
print("ROI size is zero. Skipping.")
|
78 |
|
79 |
+
# Save the processed image
|
80 |
+
output_path = 'output_image.jpg'
|
81 |
+
cv2.imwrite(output_path, frame)
|
82 |
+
return output_path
|
83 |
|
84 |
+
def process_video(input_video):
|
85 |
"""
|
86 |
+
Process video for suspicious activity detection
|
87 |
"""
|
88 |
# Open video capture
|
89 |
cap = cv2.VideoCapture(input_video)
|
|
|
103 |
if not ret:
|
104 |
break
|
105 |
|
106 |
+
# Perform YOLO detection
|
107 |
+
results = yolo_model(frame, verbose=False)
|
108 |
+
for box in results[0].boxes:
|
109 |
+
cls = int(box.cls[0]) # Class ID
|
110 |
+
confidence = float(box.conf[0])
|
111 |
+
|
112 |
+
# Detect persons only (class_id 0 for 'person')
|
113 |
+
if cls == 0 and confidence > 0.5:
|
114 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0]) # Bounding box coordinates
|
115 |
+
|
116 |
+
# Extract ROI for classification
|
117 |
+
roi = frame[y1:y2, x1:x2]
|
118 |
+
if roi.size > 0:
|
119 |
+
# Preprocess ROI to extract keypoints
|
120 |
+
keypoints = extract_keypoints(roi)
|
121 |
+
|
122 |
+
if keypoints is not None and len(keypoints) > 0:
|
123 |
+
# Standardize and reshape keypoints for LSTM input
|
124 |
+
keypoints_scaled = scaler.fit_transform([keypoints]) # Standardize features
|
125 |
+
keypoints_reshaped = keypoints_scaled.reshape((1, 1, len(keypoints))) # Reshape for LSTM
|
126 |
+
|
127 |
+
# Predict with LSTM model
|
128 |
+
prediction = (lstm_model.predict(keypoints_reshaped) > 0.5).astype(int)[0][0]
|
129 |
+
|
130 |
+
# Draw bounding box and label
|
131 |
+
color = (0, 0, 255) if prediction == 1 else (0, 255, 0)
|
132 |
+
label = 'Suspicious' if prediction == 1 else 'Normal'
|
133 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
|
134 |
+
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
135 |
+
else:
|
136 |
+
print("No valid keypoints detected for ROI. Skipping frame.")
|
137 |
+
else:
|
138 |
+
print("ROI size is zero. Skipping frame.")
|
139 |
|
140 |
# Write processed frame to output video
|
141 |
+
out.write(frame)
|
142 |
|
143 |
# Release resources
|
144 |
cap.release()
|
|
|
148 |
|
149 |
# Create Gradio interface
|
150 |
iface = gr.Interface(
|
151 |
+
fn=process_input,
|
152 |
+
inputs=[
|
153 |
+
gr.File(label="Upload Image or Video",
|
154 |
+
file_types=['image', 'video'],
|
155 |
+
type="filepath")
|
156 |
+
],
|
157 |
+
outputs=[
|
158 |
+
gr.File(label="Processed Media")
|
159 |
+
],
|
160 |
title="Suspicious Activity Detection",
|
161 |
+
description="Upload an image or video to detect suspicious activities using YOLO and LSTM models. Suspicious activities will be marked with red bounding boxes, normal activities with green."
|
162 |
)
|
163 |
|
164 |
# Launch the interface
|