import gradio as gr def generate_sql(schema, query): messages = [ {"role": "system", "content": f"""You are a SQL assistant. Use the following database schema to answer the user's questions:\n{schema}"""}, {"role": "user", "content": query}, ] inputs = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", ).to("cuda") text_streamer = TextStreamer(tokenizer, skip_prompt=True) outputs = model.generate( input_ids=inputs, streamer=text_streamer, max_new_tokens=400, use_cache=True, temperature=0.1, # Adjust temperature as needed min_p=0.1, ) generated_text = tokenizer.batch_decode(outputs)[0] return generated_text iface = gr.Interface( fn=generate_sql, inputs=[ gr.Textbox(label="Database Schema", lines=5), gr.Textbox(label="SQL Query"), ], outputs=gr.Textbox(label="Generated SQL"), title="SQL Assistant", description="Enter a database schema and a SQL query to get the corresponding SQL code.", ) iface.launch()