|
# TEXT 2 IMAGE PLAYGROUND Documentation |
|
|
|
## Overview |
|
|
|
TEXT 2 IMAGE PLAYGROUND is a Gradio-based web application designed to generate images from text prompts using advanced AI models. It offers various model options, customization parameters, and a user-friendly interface for an enhanced user experience. |
|
|
|
## Features |
|
|
|
- **Model Selection**: Choose from multiple AI models to generate images with different styles and qualities. |
|
- **Custom Prompts**: Input text prompts to define the content and style of the generated images. |
|
- **Negative Prompts**: Use negative prompts to avoid unwanted elements in the images. |
|
- **Image Customization**: Adjust parameters like seed, width, height, guidance scale, and number of inference steps. |
|
- **Random Seed Generation**: Enable random seed generation for varied outputs. |
|
- **Image Gallery**: View a gallery of predefined images for inspiration. |
|
|
|
## Interface |
|
|
|
### Description |
|
|
|
```markdown |
|
## TEXT 2 IMAGE PLAYGROUND 🥠 |
|
``` |
|
|
|
### CSS |
|
|
|
```css |
|
.gradio-container { |
|
max-width: 690px !important; |
|
} |
|
h1 { |
|
text-align: center; |
|
} |
|
footer { |
|
visibility: hidden; |
|
} |
|
``` |
|
|
|
### JavaScript |
|
|
|
```javascript |
|
function refresh() { |
|
const url = new URL(window.location); |
|
if (url.searchParams.get('__theme') !== 'dark') { |
|
url.searchParams.set('__theme', 'dark'); |
|
window.location.href = url.href; |
|
} |
|
} |
|
``` |
|
|
|
### Examples |
|
|
|
Predefined text prompts for quick testing: |
|
|
|
- 3d image, cute girl, in the style of Pixar... |
|
- Chocolate dripping from a donut against a yellow background... |
|
- Illustration of A starry night camp in the mountains... |
|
- Man in brown leather jacket posing for camera... |
|
- Commercial photography, giant burger... |
|
|
|
## Model Options |
|
|
|
```python |
|
MODEL_OPTIONS = { |
|
"Realism : V4.0_Lightning🔥": "SG161222/RealVisXL_V4.0_Lightning", |
|
"Detailed/SOTA : Mobius🚀": "Corcelio/mobius", |
|
"Anime : Cagliostrolab🍺": "cagliostrolab/animagine-xl-3.1" |
|
} |
|
``` |
|
|
|
## Configuration |
|
|
|
Environment variables and configurations: |
|
|
|
```python |
|
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) |
|
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" |
|
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" |
|
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) |
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
``` |
|
|
|
## Model Loading and Preparation |
|
|
|
Function to load and prepare models: |
|
|
|
```python |
|
def load_and_prepare_model(model_id): |
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, |
|
use_safetensors=True, |
|
add_watermarker=False, |
|
).to(device) |
|
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) |
|
|
|
if USE_TORCH_COMPILE: |
|
pipe.compile() |
|
|
|
if ENABLE_CPU_OFFLOAD: |
|
pipe.enable_model_cpu_offload() |
|
|
|
return pipe |
|
|
|
models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()} |
|
``` |
|
|
|
## Image Generation |
|
|
|
Function to generate images based on user inputs: |
|
|
|
```python |
|
@spaces.GPU(duration=60, enable_queue=True) |
|
def generate( |
|
model_choice: str, |
|
prompt: str, |
|
negative_prompt: str = "", |
|
use_negative_prompt: bool = False, |
|
seed: int = 1, |
|
width: int = 1024, |
|
height: int = 1024, |
|
guidance_scale: float = 3, |
|
num_inference_steps: int = 25, |
|
randomize_seed: bool = False, |
|
use_resolution_binning: bool = True, |
|
num_images: int = 1, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
global models |
|
pipe = models[model_choice] |
|
|
|
seed = int(randomize_seed_fn(seed, randomize_seed)) |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
options = { |
|
"prompt": [prompt] * num_images, |
|
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None, |
|
"width": width, |
|
"height": height, |
|
"guidance_scale": guidance_scale, |
|
"num_inference_steps": num_inference_steps, |
|
"generator": generator, |
|
"output_type": "pil", |
|
} |
|
|
|
if use_resolution_binning: |
|
options["use_resolution_binning"] = True |
|
|
|
images = [] |
|
for i in range(0, num_images, BATCH_SIZE): |
|
batch_options = options.copy() |
|
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE] |
|
if "negative_prompt" in batch_options: |
|
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE] |
|
images.extend(pipe(**batch_options).images) |
|
|
|
image_paths = [save_image(img) for img in images] |
|
return image_paths, seed |
|
``` |
|
|
|
## Load Predefined Images |
|
|
|
Function to load predefined images for the gallery: |
|
|
|
```python |
|
def load_predefined_images(): |
|
predefined_images = [ |
|
"assets/1.png", |
|
"assets/2.png", |
|
"assets/3.png", |
|
"assets/4.png", |
|
"assets/5.png", |
|
"assets/6.png", |
|
"assets/7.png", |
|
"assets/8.png", |
|
"assets/9.png", |
|
"assets/10.png", |
|
"assets/11.png", |
|
"assets/12.png", |
|
] |
|
return predefined_images |
|
``` |
|
|
|
## Gradio Interface |
|
|
|
Creating the Gradio interface: |
|
|
|
```python |
|
with gr.Blocks(css=css, theme="bethecloud/storj_theme", js=js_func) as demo: |
|
gr.Markdown(DESCRIPTIONx) |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
value="Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic oil --ar 2:3 --q 2 --s 750 --v 5 --ar 2:3 --q 2 --s 750 --v 5", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run🚀", scale=0) |
|
result = gr.Gallery(label="Result", columns=1, show_label=False) |
|
|
|
with gr.Row(): |
|
model_choice = gr.Dropdown( |
|
label="Model Selection ☑️", |
|
choices=list(MODEL_OPTIONS.keys()), |
|
value="Realism : V4.0_Lightning🔥" |
|
) |
|
|
|
with gr.Accordion("Advanced options", open=True): |
|
num_images = gr.Slider( |
|
label="Number of Images", |
|
minimum=1, |
|
maximum=1, |
|
step=1, |
|
value=1, |
|
) |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=5, |
|
lines=4, |
|
placeholder="Enter a negative prompt", |
|
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", |
|
visible=True, |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=512, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=64, |
|
value=1024, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=512, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=64, |
|
value=1024, |
|
) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=0.1, |
|
maximum=6, |
|
step=0.1, |
|
value=3.0, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=35, |
|
step=1, |
|
value=20, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=prompt, |
|
cache_examples=False |
|
) |
|
|
|
use_negative_prompt.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=use_negative_prompt, |
|
outputs=negative_prompt, |
|
api_name=False, |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
prompt.submit, |
|
negative_prompt.submit, |
|
run_button.click, |
|
], |
|
fn=generate, |
|
inputs=[ |
|
model_choice, |
|
prompt, |
|
negative_prompt, |
|
use_negative_prompt, |
|
seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps, |
|
randomize_seed, |
|
num_images |
|
], |
|
outputs=[result, seed], |
|
api_name="run", |
|
) |
|
|
|
with gr.Column(scale=3): |
|
gr.Markdown("### Image Gallery") |
|
predefined_gallery = gr.Gallery(label="Image Gallery", columns=4, show_label=False, value=load |
|
|
|
_predefined_images()) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=40).launch(show_api=False) |
|
``` |
|
|
|
## Running the Application |
|
|
|
To run the application, simply execute the script. The interface will launch and be accessible via a web browser. |
|
|
|
```sh |
|
python app.py |
|
``` |