import gradio as gr import os import sys from pathlib import Path import random import string import time from queue import Queue from threading import Thread import emoji text_gen=gr.Interface.load("spaces/phenomenon1981/MagicPrompt-Stable-Diffusion") def get_prompts(prompt_text): if prompt_text: return text_gen(prompt_text + " movie, realistic, 8k, cyberpunk, highly detailed, ultra super realism, realism, high graphics") else: return text_gen("") proc1=gr.Interface.load("models/digiplay/majicMIX_realistic_v6") def restart_script_periodically(): while True: random_time = random.randint(540, 600) time.sleep(random_time) os.execl(sys.executable, sys.executable, *sys.argv) restart_thread = Thread(target=restart_script_periodically, daemon=True) restart_thread.start() queue = Queue() queue_threshold = 50 #Don't add noise to the first picture no matter what (the point of noise is to get varied outputs, the first one doesn't need to vary about anything) def noadd_random_noise(prompt, noise_level=0.00): if noise_level == 0: noise_level = 0.00 percentage_noise = noise_level * 5 num_noise_chars = int(len(prompt) * (percentage_noise/100)) noise_indices = random.sample(range(len(prompt)), num_noise_chars) prompt_list = list(prompt) noise_chars = list(string.ascii_letters + string.punctuation + '' + string.digits) noise_chars.extend(['']) for index in noise_indices: prompt_list[index] = random.choice(noise_chars) return "".join(prompt_list) #normal behavior def add_random_noise(prompt, noise_level=0.00): if noise_level == 0: noise_level = 0.00 percentage_noise = noise_level * 5 num_noise_chars = int(len(prompt) * (percentage_noise/100)) noise_indices = random.sample(range(len(prompt)), num_noise_chars) prompt_list = list(prompt) noise_chars = list(string.ascii_letters + string.punctuation + ' ' + string.digits) noise_chars.extend(['๐', 'beautiful', '๐', '๐ค', '๐', '๐ค', '๐ญ', '๐', 'pretty', '๐คฏ', '๐คซ', '๐ฅด', 'sitting', '๐คฉ', '๐ฅณ', '๐', '๐ฉ', '๐คช', '๐', 'retro', '๐', '๐น', 'masterpiece', '๐ค', '๐ฝ', 'high quality', '๐', '๐ ', '๐', '๐', '๐', '๐', '๐', '๐', '๐ฎ', 'โค๏ธ', '๐', '๐', '๐', '๐', '๐ถ', '๐ฑ', 'visible', '๐น', '๐ฆ', '๐ป', '๐จ', '๐ฏ', '๐ฆ', '๐', '๐ฅ', '๐ง๏ธ', '๐', '๐', '๐ฅ', '๐ด', '๐', '๐บ', '๐ป', '๐ธ', '๐จ', '๐ ', '๐', 'โ๏ธ', 'โ๏ธ', 'โ๏ธ', 'โ๏ธ', '๐ค๏ธ', 'โ ๏ธ', '๐ฅ๏ธ', '๐ฆ๏ธ', '๐ง๏ธ', '๐ฉ๏ธ', '๐จ๏ธ', '๐ซ๏ธ', 'โ๏ธ', '๐ฌ๏ธ', '๐จ', '๐ช๏ธ', 'cute', 'kawaii', 'little', 'photo', 'movie', 'still']) for index in noise_indices: prompt_list[index] = random.choice(noise_chars) return "".join(prompt_list) def send_it1(inputs, noise_level, proc1=proc1): prompt_with_noise = noadd_random_noise(inputs, noise_level) while queue.qsize() >= queue_threshold: time.sleep(2) queue.put(prompt_with_noise) output1 = proc1(prompt_with_noise) return output1 def send_it2(inputs, noise_level, proc1=proc1): prompt_with_noise = add_random_noise(inputs, noise_level) while queue.qsize() >= queue_threshold: time.sleep(2) queue.put(prompt_with_noise) output2 = proc1(prompt_with_noise) return output2 def send_it3(inputs, noise_level, proc1=proc1): prompt_with_noise = add_random_noise(inputs, noise_level) while queue.qsize() >= queue_threshold: time.sleep(2) queue.put(prompt_with_noise) output3 = proc1(prompt_with_noise) return output3 def send_it4(inputs, noise_level, proc1=proc1): prompt_with_noise = add_random_noise(inputs, noise_level) while queue.qsize() >= queue_threshold: time.sleep(2) queue.put(prompt_with_noise) output4 = proc1(prompt_with_noise) return output4 with gr.Blocks(css='style.css') as demo: gr.HTML( """
๐ค Celebrating 10000 views at blogger! ๐ค
โค๏ธ Made by Achyuth! โค๏ธ
Please allow up to 1 minute for each image to generate, for a total of 6 minutes max.
Unleash your creative side and generate mesmerizing images with just a few clicks! Enter a spark of inspiration in the "Basic Idea" text box and click the "Magic Prompt" button to elevate it to a polished masterpiece. Make any final tweaks in the "Full Prompt" box and hit the "Generate Images" button to watch your vision come to life. Experiment with the "Noise Level" for a diverse range of outputs, from similar to wildly unique. Let the fun begin!