import os
import traceback
import gradio as gr
from gui.asset_components import AssetComponentsUtils
from gui.ui_abstract_component import AbstractComponentUI
from gui.ui_components_html import GradioComponentsHTML
from shortGPT.audio.edge_voice_module import EdgeTTSVoiceModule
from shortGPT.audio.eleven_voice_module import ElevenLabsVoiceModule
from shortGPT.audio.coqui_voice_module import CoquiVoiceModule
from shortGPT.config.api_db import ApiKeyManager
from shortGPT.config.languages import (EDGE_TTS_VOICENAME_MAPPING,
ELEVEN_SUPPORTED_LANGUAGES,
COQUI_SUPPORTED_LANGUAGES,
LANGUAGE_ACRONYM_MAPPING,
Language)
from shortGPT.engine.facts_short_engine import FactsShortEngine
from shortGPT.engine.reddit_short_engine import RedditShortEngine
class ShortAutomationUI(AbstractComponentUI):
def __init__(self, shortGptUI: gr.Blocks):
self.shortGptUI = shortGptUI
self.embedHTML = '
'
self.progress_counter = 0
self.short_automation = None
def create_ui(self):
with gr.Row(visible=False) as short_automation:
with gr.Column():
numShorts = gr.Number(label="Number of shorts", minimum=1, value=1)
short_type = gr.Radio(["Reddit Story shorts", "Historical Facts shorts", "Scientific Facts shorts", "Custom Facts shorts"], label="Type of shorts generated", value="Scientific Facts shorts", interactive=True)
facts_subject = gr.Textbox(label="Write a subject for your facts (example: Football facts)", interactive=True, visible=False)
short_type.change(lambda x: gr.update(visible=x == "Custom Facts shorts"), [short_type], [facts_subject])
tts_engine = gr.Radio([AssetComponentsUtils.ELEVEN_TTS, AssetComponentsUtils.EDGE_TTS, AssetComponentsUtils.COQUI_TTS], label="Text to speech engine", value=AssetComponentsUtils.ELEVEN_TTS, interactive=True)
self.tts_engine = tts_engine.value
with gr.Column(visible=True) as eleven_tts:
language_eleven = gr.Radio([lang.value for lang in ELEVEN_SUPPORTED_LANGUAGES], label="Language", value="English", interactive=True)
voice_eleven = AssetComponentsUtils.voiceChoice(provider=AssetComponentsUtils.ELEVEN_TTS)
with gr.Column(visible=False) as edge_tts:
language_edge = gr.Dropdown([lang.value.upper() for lang in Language], label="Language", value="ENGLISH", interactive=True)
with gr.Column(visible=False) as coqui_tts:
language_coqui = gr.Radio([lang.value for lang in COQUI_SUPPORTED_LANGUAGES], label="Language", value="English", interactive=True)
voice_coqui = AssetComponentsUtils.voiceChoice(provider=AssetComponentsUtils.COQUI_TTS)
def tts_engine_change(x):
self.tts_engine = x
return gr.update(visible=x == AssetComponentsUtils.ELEVEN_TTS), gr.update(visible=x == AssetComponentsUtils.EDGE_TTS), gr.update(visible=x == AssetComponentsUtils.COQUI_TTS)
tts_engine.change(tts_engine_change, tts_engine, [eleven_tts, edge_tts, coqui_tts])
useImages = gr.Checkbox(label="Use images", value=True)
numImages = gr.Radio([5, 10, 25], value=25, label="Number of images per short", visible=True, interactive=True)
useImages.change(lambda x: gr.update(visible=x), useImages, numImages)
addWatermark = gr.Checkbox(label="Add watermark")
watermark = gr.Textbox(label="Watermark (your channel name)", visible=False)
addWatermark.change(lambda x: gr.update(visible=x), [addWatermark], [watermark])
AssetComponentsUtils.background_video_checkbox()
AssetComponentsUtils.background_music_checkbox()
createButton = gr.Button("Create Shorts")
generation_error = gr.HTML(visible=True)
video_folder = gr.Button("📁", visible=True)
output = gr.HTML()
video_folder.click(lambda _: AssetComponentsUtils.start_file(os.path.abspath("videos/")))
createButton.click(self.inspect_create_inputs, inputs=[AssetComponentsUtils.background_video_checkbox(), AssetComponentsUtils.background_music_checkbox(), watermark, short_type, facts_subject], outputs=[generation_error]).success(self.create_short, inputs=[
numShorts,
short_type,
tts_engine,
language_eleven,
language_edge,
language_coqui,
numImages,
watermark,
AssetComponentsUtils.background_video_checkbox(),
AssetComponentsUtils.background_music_checkbox(),
facts_subject,
voice_eleven,
voice_coqui
], outputs=[output, video_folder, generation_error])
self.short_automation = short_automation
return self.short_automation
def create_short(self, numShorts, short_type, tts_engine, language_eleven, language_edge, language_coqui, numImages, watermark, background_video_list, background_music_list, facts_subject, voice_eleven, voice_coqui, progress=gr.Progress()):
'''Creates a short'''
try:
numShorts = int(numShorts)
numImages = int(numImages) if numImages else None
background_videos = (background_video_list * ((numShorts // len(background_video_list)) + 1))[:numShorts]
background_musics = (background_music_list * ((numShorts // len(background_music_list)) + 1))[:numShorts]
if tts_engine == AssetComponentsUtils.ELEVEN_TTS:
language = Language(language_eleven.lower().capitalize())
voice_module = ElevenLabsVoiceModule(ApiKeyManager.get_api_key('ELEVEN LABS'), voice_eleven, checkElevenCredits=True)
elif tts_engine == AssetComponentsUtils.EDGE_TTS:
language = Language(language_edge.lower().capitalize())
voice_module = EdgeTTSVoiceModule(EDGE_TTS_VOICENAME_MAPPING[language]['male'])
elif tts_engine == AssetComponentsUtils.COQUI_TTS:
language = Language(language_coqui.lower().capitalize())
voice_module = CoquiVoiceModule(voice_coqui, LANGUAGE_ACRONYM_MAPPING[language])
for i in range(numShorts):
shortEngine = self.create_short_engine(short_type=short_type, voice_module=voice_module, language=language, numImages=numImages, watermark=watermark,
background_video=background_videos[i], background_music=background_musics[i], facts_subject=facts_subject)
num_steps = shortEngine.get_total_steps()
def logger(prog_str):
progress(self.progress_counter / (num_steps * numShorts), f"Making short {i+1}/{numShorts} - {prog_str}")
shortEngine.set_logger(logger)
for step_num, step_info in shortEngine.makeContent():
progress(self.progress_counter / (num_steps * numShorts), f"Making short {i+1}/{numShorts} - {step_info}")
self.progress_counter += 1
video_path = shortEngine.get_video_output_path()
current_url = self.shortGptUI.share_url+"/" if self.shortGptUI.share else self.shortGptUI.local_url
file_url_path = f"{current_url}file={video_path}"
file_name = video_path.split("/")[-1].split("\\")[-1]
self.embedHTML += f'''
'''
yield self.embedHTML + '
', gr.Button.update(visible=True), gr.update(visible=False)
except Exception as e:
traceback_str = ''.join(traceback.format_tb(e.__traceback__))
error_name = type(e).__name__.capitalize() + " : " + f"{e.args[0]}"
print("Error", traceback_str)
error_html = GradioComponentsHTML.get_html_error_template().format(error_message=error_name, stack_trace=traceback_str)
yield self.embedHTML + '', gr.Button.update(visible=True), gr.HTML.update(value=error_html, visible=True)
def inspect_create_inputs(self, background_video_list, background_music_list, watermark, short_type, facts_subject):
if short_type == "Custom Facts shorts":
if not facts_subject:
raise gr.Error("Please write down your facts short's subject")
if not background_video_list:
raise gr.Error("Please select at least one background video.")
if not background_music_list:
raise gr.Error("Please select at least one background music.")
if watermark != "":
if not watermark.replace(" ", "").isalnum():
raise gr.Error("Watermark should only contain letters and numbers.")
if len(watermark) > 25:
raise gr.Error("Watermark should not exceed 25 characters.")
if len(watermark) < 3:
raise gr.Error("Watermark should be at least 3 characters long.")
openai_key = ApiKeyManager.get_api_key("OPENAI")
if not openai_key:
raise gr.Error("OPENAI API key is missing. Please go to the config tab and enter the API key.")
eleven_labs_key = ApiKeyManager.get_api_key("ELEVEN LABS")
if self.tts_engine == AssetComponentsUtils.ELEVEN_TTS and not eleven_labs_key:
raise gr.Error("ELEVEN LABS API key is missing. Please go to the config tab and enter the API key.")
return gr.update(visible=False)
def create_short_engine(self, short_type, voice_module, language, numImages, watermark, background_video, background_music, facts_subject):
if short_type == "Reddit Story shorts":
return RedditShortEngine(voice_module, background_video_name=background_video, background_music_name=background_music, num_images=numImages, watermark=watermark, language=language)
if "fact" in short_type.lower():
if "custom" in short_type.lower():
facts_subject = facts_subject
else:
facts_subject = short_type
return FactsShortEngine(voice_module, facts_type=facts_subject, background_video_name=background_video, background_music_name=background_music, num_images=50, watermark=watermark, language=language)
raise gr.Error(f"Short type does not have a valid short engine: {short_type}")