import gradio as gr from huggingface_hub import InferenceClient import os import time import asyncio from pipeline import PromptEnhancer """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") async def advancedPromptPipeline(InputPrompt): model="gpt-4o-mini" if model == "gpt-4o": i_cost=5/10**6 o_cost=15/10**6 elif model == "gpt-4o-mini": i_cost=0.15/10**6 o_cost=0.6/10**6 enhancer = PromptEnhancer(model) start_time = time.time() advanced_prompt = await enhancer.enhance_prompt(input_prompt, perform_eval=False) elapsed_time = time.time() - start_time """return { "model": model, "elapsed_time": elapsed_time, "prompt_tokens": enhancer.prompt_tokens, "completion_tokens": enhancer.completion_tokens, "approximate_cost": (enhancer.prompt_tokens*i_cost)+(enhancer.completion_tokens*o_cost), "inout_prompt": input_prompt, "advanced_prompt": advanced_prompt["advanced_prompt"], }""" return advanced_prompt["advanced_prompt"] def respond( message, #history: list[tuple[str, str]], #system_message, #max_tokens, #temperature, #top_p, ): #messages = [{"role": "system", "content": system_message}] #for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) # #messages.append({"role": "user", "content": message}) response = "" #for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, #): # token = message.choices[0].delta.content # response += token # yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ #demo = gr.ChatInterface( #advancedPromptPipeline, # respond, #additional_inputs=[ #gr.Textbox(value="You are a friendly Chatbot.", label="System message"), #gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), #gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), #gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", # ), #], #) demo = gr.Interface(fn=advancedPromptPipeline, inputs="textbox", outputs="textbox") if __name__ == "__main__": demo.launch()