AdamOswald1's picture
Update app.py
326d32e
raw
history blame
19.8 kB
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
import gradio as gr
import torch
from PIL import Image
import utils
import datetime
import time
import psutil
import random
start_time = time.time()
is_colab = utils.is_google_colab()
state = None
current_steps = 25
class Model:
def __init__(self, name, path="", prefix=""):
self.name = name
self.path = path
self.prefix = prefix
self.pipe_t2i = None
self.pipe_i2i = None
models = [
Model("Arcane", "nitrosocke/Arcane-Diffusion", "arcane style "),
Model("Dreamlike Diffusion 1.0", "dreamlike-art/dreamlike-diffusion-1.0", "dreamlikeart "),
Model("Archer", "nitrosocke/archer-diffusion", "archer style "),
Model("Anything V3", "Linaqruf/anything-v3.0", ""),
Model("Anything V4", "andite/anything-v4.0", ""),
Model("Modern Disney", "nitrosocke/mo-di-diffusion", "modern disney style "),
Model("Classic Disney", "nitrosocke/classic-anim-diffusion", "classic disney style "),
Model("Loving Vincent (Van Gogh)", "dallinmackay/Van-Gogh-diffusion", "lvngvncnt "),
Model("Wavyfusion", "wavymulder/wavyfusion", "wa-vy style "),
Model("Analog Diffusion", "wavymulder/Analog-Diffusion", "analog style "),
Model("Redshift renderer (Cinema4D)", "nitrosocke/redshift-diffusion", "redshift style "),
Model("Midjourney v4 style", "prompthero/midjourney-v4-diffusion", "mdjrny-v4 style "),
Model("Waifu", "hakurei/waifu-diffusion"),
Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style "),
Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "),
Model("TrinArt v2", "naclbit/trinart_stable_diffusion_v2"),
Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "),
Model("Balloon Art", "Fictiverse/Stable_Diffusion_BalloonArt_Model", "BalloonArt "),
Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy "),
Model("Pokémon", "lambdalabs/sd-pokemon-diffusers"),
Model("Pony Diffusion", "AstraliteHeart/pony-diffusion"),
Model("Robo Diffusion", "nousr/robo-diffusion"),
Model("Epic Diffusion", "johnslegers/epic-diffusion"),
Model("Space Machine", "rabidgremlin/sd-db-epic-space-machine", "EpicSpaceMachine"),
Model("Spacecraft", "rabidgremlin/sd-db-epic-space-machine, Guizmus/Tardisfusion", "EpicSpaceMachine, Tardis Box style"),
Model("TARDIS", "Guizmus/Tardisfusion", "Tardis Box style"),
Model("Modern Era TARDIS Interior", "Guizmus/Tardisfusion", "Modern Tardis style"),
Model("Classic Era TARDIS Interior", "Guizmus/Tardisfusion", "Classic Tardis style"),
Model("Spacecraft Interior", "Guizmus/Tardisfusion, rabidgremlin/sd-db-epic-space-machine", "Classic Tardis style, Modern Tardis style, EpicSpaceMachine"),
Model("CLIP", "EleutherAI/clip-guided-diffusion", "CLIP"),
Model("Genshin Waifu", "crumb/genshin-stable-inversion, yuiqena/GenshinImpact, katakana/2D-Mix, Guizmus/AnimeChanStyle", "Female, female, Woman, woman, Girl, girl"),
Model("Genshin", "crumb/genshin-stable-inversion, yuiqena/GenshinImpact, katakana/2D-Mix, Guizmus/AnimeChanStyle", ""),
Model("Waifu", "hakurei/waifu-diffusion, technillogue/waifu-diffusion, Guizmus/AnimeChanStyle, katakana/2D-Mix", ""),
Model("Pokémon", "lambdalabs/sd-pokemon-diffusers", ""),
Model("Test", "AdamOswald1/Idk", ""),
Model("Test2", "AdamOswald1/Tester", ""),
Model("Anime", "Guizmus/AnimeChanStyle, katakana/2D-Mix", ""),
Model("Beeple", "riccardogiorato/beeple-diffusion", "beeple style "),
Model("Avatar", "riccardogiorato/avatar-diffusion", "avatartwow style "),
Model("Poolsuite", "prompthero/poolsuite", "poolsuite style ")
]
custom_model = None
if is_colab:
models.insert(0, Model("Custom model"))
custom_model = models[0]
last_mode = "txt2img"
current_model = models[1] if is_colab else models[0]
current_model_path = current_model.path
if is_colab:
pipe = StableDiffusionPipeline.from_pretrained(
current_model.path,
torch_dtype=torch.float16,
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
safety_checker=lambda images, clip_input: (images, False)
)
else:
pipe = StableDiffusionPipeline.from_pretrained(
current_model.path,
torch_dtype=torch.float16,
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
)
if torch.cuda.is_available():
pipe = pipe.to("cuda")
pipe.enable_xformers_memory_efficient_attention()
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
def error_str(error, title="Error"):
return f"""#### {title}
{error}""" if error else ""
def update_state(new_state):
global state
state = new_state
def update_state_info(old_state):
if state and state != old_state:
return gr.update(value=state)
def custom_model_changed(path):
models[0].path = path
global current_model
current_model = models[0]
def on_model_change(model_name):
prefix = "Enter prompt. \"" + next((m.prefix for m in models if m.name == model_name), None) + "\" is prefixed automatically" if model_name != models[0].name else "Don't forget to use the custom model prefix in the prompt!"
return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix)
def on_steps_change(steps):
global current_steps
current_steps = steps
def pipe_callback(step: int, timestep: int, latents: torch.FloatTensor):
update_state(f"{step}/{current_steps} steps")#\nTime left, sec: {timestep/100:.0f}")
def inference(model_name, prompt, guidance, steps, n_images=1, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
update_state(" ")
print(psutil.virtual_memory()) # print memory usage
global current_model
for model in models:
if model.name == model_name:
current_model = model
model_path = current_model.path
# generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
if seed == 0:
seed = random.randint(0, 2147483647)
if torch.cuda.is_available():
generator = torch.Generator('cuda').manual_seed(seed)
else:
generator = torch.Generator().manual_seed(seed)
try:
if img is not None:
return img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
else:
return txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
except Exception as e:
return None, error_str(e)
def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed):
print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")
global last_mode
global pipe
global current_model_path
if model_path != current_model_path or last_mode != "txt2img":
current_model_path = model_path
update_state(f"Loading {current_model.name} text-to-image model...")
if is_colab or current_model == custom_model:
pipe = StableDiffusionPipeline.from_pretrained(
current_model_path,
torch_dtype=torch.float16,
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
safety_checker=lambda images, clip_input: (images, False)
)
else:
pipe = StableDiffusionPipeline.from_pretrained(
current_model_path,
torch_dtype=torch.float16,
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
)
# pipe = pipe.to("cpu")
# pipe = current_model.pipe_t2i
if torch.cuda.is_available():
pipe = pipe.to("cuda")
pipe.enable_xformers_memory_efficient_attention()
last_mode = "txt2img"
prompt = current_model.prefix + prompt
result = pipe(
prompt,
negative_prompt = neg_prompt,
num_images_per_prompt=n_images,
num_inference_steps = int(steps),
guidance_scale = guidance,
width = width,
height = height,
generator = generator,
callback=pipe_callback)
# update_state(f"Done. Seed: {seed}")
return replace_nsfw_images(result)
def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed):
print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")
global last_mode
global pipe
global current_model_path
if model_path != current_model_path or last_mode != "img2img":
current_model_path = model_path
update_state(f"Loading {current_model.name} image-to-image model...")
if is_colab or current_model == custom_model:
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
current_model_path,
torch_dtype=torch.float16,
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
safety_checker=lambda images, clip_input: (images, False)
)
else:
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
current_model_path,
torch_dtype=torch.float16,
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
)
# pipe = pipe.to("cpu")
# pipe = current_model.pipe_i2i
if torch.cuda.is_available():
pipe = pipe.to("cuda")
pipe.enable_xformers_memory_efficient_attention()
last_mode = "img2img"
prompt = current_model.prefix + prompt
ratio = min(height / img.height, width / img.width)
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
result = pipe(
prompt,
negative_prompt = neg_prompt,
num_images_per_prompt=n_images,
image = img,
num_inference_steps = int(steps),
strength = strength,
guidance_scale = guidance,
# width = width,
# height = height,
generator = generator,
callback=pipe_callback)
# update_state(f"Done. Seed: {seed}")
return replace_nsfw_images(result)
def replace_nsfw_images(results):
if is_colab:
return results.images
for i in range(len(results.images)):
if results.nsfw_content_detected[i]:
results.images[i] = Image.open("nsfw.png")
return results.images
# css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
# """
with gr.Blocks(css="style.css") as demo:
gr.HTML(
f"""
<div class="finetuned-diffusion-div">
<div>
<h1>Finetuned Diffusion</h1>
</div>
<p>
BROKEN, USE COLLAB VERSION INSTEAD! ALSO ADD ", 'safety_checker=None'" TO YOUR PROMPT!
</p>
<p>
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
<a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spider-Verse</a>, <a href="https://huggingface.co/nitrosocke/mo-di-diffusion">Modern Disney</a>, <a href="https://huggingface.co/nitrosocke/classic-anim-diffusion">Classic Disney</a>, <a href="https://huggingface.co/dallinmackay/Van-Gogh-diffusion">Loving Vincent (Van Gogh)</a>, <a href="https://huggingface.co/nitrosocke/redshift-diffusion">Redshift renderer (Cinema4D)</a>, <a href="https://huggingface.co/prompthero/midjourney-v4-diffusion">Midjourney v4 style</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokémon</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony Diffusion</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo Diffusion</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a>, <a href="https://huggingface.co/dallinmackay/Tron-Legacy-diffusion">Tron Legacy</a>, <a href="https://huggingface.co/Fictiverse/Stable_Diffusion_BalloonArt_Model">Balloon Art</a> + in colab notebook you can load any other Diffusers 🧨 SD model hosted on HuggingFace 🤗.
</p>
<p>You can skip the queue and load custom models in the colab: <a href="https://colab.research.google.com/gist/AdamOswald/fe67300b1b3638d610038cde5e145b0b/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p>
Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
</p>
<p>You can also duplicate this space and upgrade to gpu by going to settings:<br>
<a style="display:inline-block" href="https://huggingface.co/spaces/anzorq/finetuned_diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=55):
with gr.Group():
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
with gr.Box(visible=False) as custom_model_group:
custom_model_path = gr.Textbox(label="Custom model path", placeholder="Path to model, e.g. nitrosocke/Arcane-Diffusion", interactive=True)
gr.HTML("<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>")
with gr.Row():
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
# image_out = gr.Image(height=512)
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(container=False)
error_output = gr.Markdown()
with gr.Column(scale=45):
with gr.Tab("Options"):
with gr.Group():
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=8, step=1)
with gr.Row():
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
steps = gr.Slider(label="Steps", value=current_steps, minimum=2, maximum=300, step=1)
with gr.Row():
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
with gr.Tab("Image to image"):
with gr.Group():
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
if is_colab:
model_name.change(on_model_change, inputs=model_name, outputs=[custom_model_group, prompt], queue=False)
custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
steps.change(on_steps_change, inputs=[steps], outputs=[], queue=False)
inputs = [model_name, prompt, guidance, steps, n_images, width, height, seed, image, strength, neg_prompt]
outputs = [gallery, error_output]
prompt.submit(inference, inputs=inputs, outputs=outputs)
generate.click(inference, inputs=inputs, outputs=outputs)
ex = gr.Examples([
[models[7].name, "tiny cute and adorable kitten adventurer dressed in a warm overcoat with survival gear on a winters day", 7.5, 25],
[models[4].name, "portrait of dwayne johnson", 7.0, 35],
[models[5].name, "portrait of a beautiful alyx vance half life", 10, 25],
[models[6].name, "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7.0, 30],
[models[5].name, "fantasy portrait painting, digital art", 4.0, 20],
], inputs=[model_name, prompt, guidance, steps], outputs=outputs, fn=inference, cache_examples=False)
gr.HTML("""
<div style="border-top: 1px solid #303030;">
<br>
<p>Models by <a href="https://huggingface.co/nitrosocke">@nitrosocke</a>, <a href="https://twitter.com/haruu1367">@haruu1367</a>, <a href="https://twitter.com/DGSpitzer">@Helixngc7293</a>, <a href="https://twitter.com/dal_mack">@dal_mack</a>, <a href="https://twitter.com/prompthero">@prompthero</a> and others. ❤️</p>
<p>This space uses the <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver++</a> sampler by <a href="https://arxiv.org/abs/2206.00927">Cheng Lu, et al.</a>.</p>
<p>Space by:<br>
<a href="https://twitter.com/hahahahohohe"><img src="https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social" alt="Twitter Follow"></a><br>
<a href="https://github.com/qunash"><img alt="GitHub followers" src="https://img.shields.io/github/followers/qunash?style=social" alt="Github Follow"></a></p><br><br>
<a href="https://www.buymeacoffee.com/anzorq" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 45px !important;width: 162px !important;" ></a><br><br>
<p><img src="https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion" alt="visitors"></p>
</div>
""")
demo.load(update_state_info, inputs=state_info, outputs=state_info, every=0.5, show_progress=False)
print(f"Space built in {time.time() - start_time:.2f} seconds")
# if not is_colab:
demo.queue(concurrency_count=1)
demo.launch(debug=is_colab, share=is_colab)