Spaces:
Runtime error
Runtime error
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler | |
import gradio as gr | |
import torch | |
from PIL import Image | |
import utils | |
import datetime | |
import time | |
import psutil | |
import random | |
start_time = time.time() | |
is_colab = utils.is_google_colab() | |
state = None | |
current_steps = 25 | |
class Model: | |
def __init__(self, name, path="", prefix=""): | |
self.name = name | |
self.path = path | |
self.prefix = prefix | |
self.pipe_t2i = None | |
self.pipe_i2i = None | |
models = [ | |
Model("Arcane", "nitrosocke/Arcane-Diffusion", "arcane style "), | |
Model("Dreamlike Diffusion 1.0", "dreamlike-art/dreamlike-diffusion-1.0", "dreamlikeart "), | |
Model("Archer", "nitrosocke/archer-diffusion", "archer style "), | |
Model("Anything V3", "Linaqruf/anything-v3.0", ""), | |
Model("Modern Disney", "nitrosocke/mo-di-diffusion", "modern disney style "), | |
Model("Classic Disney", "nitrosocke/classic-anim-diffusion", "classic disney style "), | |
Model("Loving Vincent (Van Gogh)", "dallinmackay/Van-Gogh-diffusion", "lvngvncnt "), | |
Model("Wavyfusion", "wavymulder/wavyfusion", "wa-vy style "), | |
Model("Analog Diffusion", "wavymulder/Analog-Diffusion", "analog style "), | |
Model("Redshift renderer (Cinema4D)", "nitrosocke/redshift-diffusion", "redshift style "), | |
Model("Midjourney v4 style", "prompthero/midjourney-v4-diffusion", "mdjrny-v4 style "), | |
Model("Waifu", "hakurei/waifu-diffusion"), | |
Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style "), | |
Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "), | |
Model("TrinArt v2", "naclbit/trinart_stable_diffusion_v2"), | |
Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "), | |
Model("Balloon Art", "Fictiverse/Stable_Diffusion_BalloonArt_Model", "BalloonArt "), | |
Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy "), | |
Model("Pokémon", "lambdalabs/sd-pokemon-diffusers"), | |
Model("Pony Diffusion", "AstraliteHeart/pony-diffusion"), | |
Model("Robo Diffusion", "nousr/robo-diffusion"), | |
Model("Epic Diffusion", "johnslegers/epic-diffusion"), | |
Model("Space Machine", "rabidgremlin/sd-db-epic-space-machine", "EpicSpaceMachine"), | |
Model("Spacecraft", "rabidgremlin/sd-db-epic-space-machine, Guizmus/Tardisfusion", "EpicSpaceMachine, Tardis Box style"), | |
Model("TARDIS", "Guizmus/Tardisfusion", "Tardis Box style"), | |
Model("Modern Era TARDIS Interior", "Guizmus/Tardisfusion", "Modern Tardis style"), | |
Model("Classic Era TARDIS Interior", "Guizmus/Tardisfusion", "Classic Tardis style"), | |
Model("Spacecraft Interior", "Guizmus/Tardisfusion, rabidgremlin/sd-db-epic-space-machine", "Classic Tardis style, Modern Tardis style, EpicSpaceMachine"), | |
Model("CLIP", "EleutherAI/clip-guided-diffusion", "CLIP"), | |
Model("Genshin Waifu", "crumb/genshin-stable-inversion, yuiqena/GenshinImpact, katakana/2D-Mix, Guizmus/AnimeChanStyle", "Female, female, Woman, woman, Girl, girl"), | |
Model("Genshin", "crumb/genshin-stable-inversion, yuiqena/GenshinImpact, katakana/2D-Mix, Guizmus/AnimeChanStyle", ""), | |
Model("Waifu", "hakurei/waifu-diffusion, technillogue/waifu-diffusion, Guizmus/AnimeChanStyle, katakana/2D-Mix", ""), | |
Model("Pokémon", "lambdalabs/sd-pokemon-diffusers", ""), | |
Model("Test", "AdamOswald1/Idk", ""), | |
Model("Test2", "AdamOswald1/Tester", ""), | |
Model("Anime", "Guizmus/AnimeChanStyle, katakana/2D-Mix", ""), | |
Model("Beeple", "riccardogiorato/beeple-diffusion", "beeple style "), | |
Model("Avatar", "riccardogiorato/avatar-diffusion", "avatartwow style "), | |
Model("Poolsuite", "prompthero/poolsuite", "poolsuite style ") | |
] | |
custom_model = None | |
if is_colab: | |
models.insert(0, Model("Custom model")) | |
custom_model = models[0] | |
last_mode = "txt2img" | |
current_model = models[1] if is_colab else models[0] | |
current_model_path = current_model.path | |
if is_colab: | |
pipe = StableDiffusionPipeline.from_pretrained( | |
current_model.path, | |
torch_dtype=torch.float16, | |
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"), | |
safety_checker=lambda images, clip_input: (images, False) | |
) | |
else: | |
pipe = StableDiffusionPipeline.from_pretrained( | |
current_model.path, | |
torch_dtype=torch.float16, | |
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler") | |
) | |
if torch.cuda.is_available(): | |
pipe = pipe.to("cuda") | |
pipe.enable_xformers_memory_efficient_attention() | |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶" | |
def error_str(error, title="Error"): | |
return f"""#### {title} | |
{error}""" if error else "" | |
def update_state(new_state): | |
global state | |
state = new_state | |
def update_state_info(old_state): | |
if state and state != old_state: | |
return gr.update(value=state) | |
def custom_model_changed(path): | |
models[0].path = path | |
global current_model | |
current_model = models[0] | |
def on_model_change(model_name): | |
prefix = "Enter prompt. \"" + next((m.prefix for m in models if m.name == model_name), None) + "\" is prefixed automatically" if model_name != models[0].name else "Don't forget to use the custom model prefix in the prompt!" | |
return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix) | |
def on_steps_change(steps): | |
global current_steps | |
current_steps = steps | |
def pipe_callback(step: int, timestep: int, latents: torch.FloatTensor): | |
update_state(f"{step}/{current_steps} steps")#\nTime left, sec: {timestep/100:.0f}") | |
def inference(model_name, prompt, guidance, steps, n_images=1, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""): | |
update_state(" ") | |
print(psutil.virtual_memory()) # print memory usage | |
global current_model | |
for model in models: | |
if model.name == model_name: | |
current_model = model | |
model_path = current_model.path | |
# generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None | |
if seed == 0: | |
seed = random.randint(0, 2147483647) | |
generator = torch.Generator('cuda').manual_seed(seed) | |
try: | |
if img is not None: | |
return img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}" | |
else: | |
return txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}" | |
except Exception as e: | |
return None, error_str(e) | |
def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed): | |
print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}") | |
global last_mode | |
global pipe | |
global current_model_path | |
if model_path != current_model_path or last_mode != "txt2img": | |
current_model_path = model_path | |
update_state(f"Loading {current_model.name} text-to-image model...") | |
if is_colab or current_model == custom_model: | |
pipe = StableDiffusionPipeline.from_pretrained( | |
current_model_path, | |
torch_dtype=torch.float16, | |
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"), | |
safety_checker=lambda images, clip_input: (images, False) | |
) | |
else: | |
pipe = StableDiffusionPipeline.from_pretrained( | |
current_model_path, | |
torch_dtype=torch.float16, | |
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler") | |
) | |
# pipe = pipe.to("cpu") | |
# pipe = current_model.pipe_t2i | |
if torch.cuda.is_available(): | |
pipe = pipe.to("cuda") | |
pipe.enable_xformers_memory_efficient_attention() | |
last_mode = "txt2img" | |
prompt = current_model.prefix + prompt | |
result = pipe( | |
prompt, | |
negative_prompt = neg_prompt, | |
num_images_per_prompt=n_images, | |
num_inference_steps = int(steps), | |
guidance_scale = guidance, | |
width = width, | |
height = height, | |
generator = generator, | |
callback=pipe_callback) | |
# update_state(f"Done. Seed: {seed}") | |
return replace_nsfw_images(result) | |
def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed): | |
print(f"{datetime.datetime.now()} img_to_img, model: {model_path}") | |
global last_mode | |
global pipe | |
global current_model_path | |
if model_path != current_model_path or last_mode != "img2img": | |
current_model_path = model_path | |
update_state(f"Loading {current_model.name} image-to-image model...") | |
if is_colab or current_model == custom_model: | |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( | |
current_model_path, | |
torch_dtype=torch.float16, | |
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"), | |
safety_checker=lambda images, clip_input: (images, False) | |
) | |
else: | |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( | |
current_model_path, | |
torch_dtype=torch.float16, | |
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler") | |
) | |
# pipe = pipe.to("cpu") | |
# pipe = current_model.pipe_i2i | |
if torch.cuda.is_available(): | |
pipe = pipe.to("cuda") | |
pipe.enable_xformers_memory_efficient_attention() | |
last_mode = "img2img" | |
prompt = current_model.prefix + prompt | |
ratio = min(height / img.height, width / img.width) | |
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS) | |
result = pipe( | |
prompt, | |
negative_prompt = neg_prompt, | |
num_images_per_prompt=n_images, | |
image = img, | |
num_inference_steps = int(steps), | |
strength = strength, | |
guidance_scale = guidance, | |
# width = width, | |
# height = height, | |
generator = generator, | |
callback=pipe_callback) | |
# update_state(f"Done. Seed: {seed}") | |
return replace_nsfw_images(result) | |
def replace_nsfw_images(results): | |
if is_colab: | |
return results.images | |
for i in range(len(results.images)): | |
if results.nsfw_content_detected[i]: | |
results.images[i] = Image.open("nsfw.png") | |
return results.images | |
# css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem} | |
# """ | |
with gr.Blocks(css="style.css") as demo: | |
gr.HTML( | |
f""" | |
<div class="finetuned-diffusion-div"> | |
<div> | |
<h1>Finetuned Diffusion</h1> | |
</div> | |
<p> | |
BROKEN, USE COLLAB VERSION INSTEAD! ALSO ADD ", 'safety_checker=None'" TO YOUR PROMPT! | |
</p> | |
<p> | |
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br> | |
<a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spider-Verse</a>, <a href="https://huggingface.co/nitrosocke/mo-di-diffusion">Modern Disney</a>, <a href="https://huggingface.co/nitrosocke/classic-anim-diffusion">Classic Disney</a>, <a href="https://huggingface.co/dallinmackay/Van-Gogh-diffusion">Loving Vincent (Van Gogh)</a>, <a href="https://huggingface.co/nitrosocke/redshift-diffusion">Redshift renderer (Cinema4D)</a>, <a href="https://huggingface.co/prompthero/midjourney-v4-diffusion">Midjourney v4 style</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokémon</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony Diffusion</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo Diffusion</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a>, <a href="https://huggingface.co/dallinmackay/Tron-Legacy-diffusion">Tron Legacy</a>, <a href="https://huggingface.co/Fictiverse/Stable_Diffusion_BalloonArt_Model">Balloon Art</a> + in colab notebook you can load any other Diffusers 🧨 SD model hosted on HuggingFace 🤗. | |
</p> | |
<p>You can skip the queue and load custom models in the colab: <a href="https://colab.research.google.com/gist/AdamOswald/fe67300b1b3638d610038cde5e145b0b/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p> | |
Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")} | |
</p> | |
<p>You can also duplicate this space and upgrade to gpu by going to settings:<br> | |
<a style="display:inline-block" href="https://huggingface.co/spaces/anzorq/finetuned_diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=55): | |
with gr.Group(): | |
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name) | |
with gr.Box(visible=False) as custom_model_group: | |
custom_model_path = gr.Textbox(label="Custom model path", placeholder="Path to model, e.g. nitrosocke/Arcane-Diffusion", interactive=True) | |
gr.HTML("<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>") | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False) | |
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False)) | |
# image_out = gr.Image(height=512) | |
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto") | |
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(container=False) | |
error_output = gr.Markdown() | |
with gr.Column(scale=45): | |
with gr.Tab("Options"): | |
with gr.Group(): | |
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image") | |
n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=8, step=1) | |
with gr.Row(): | |
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15) | |
steps = gr.Slider(label="Steps", value=current_steps, minimum=2, maximum=300, step=1) | |
with gr.Row(): | |
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8) | |
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8) | |
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1) | |
with gr.Tab("Image to image"): | |
with gr.Group(): | |
image = gr.Image(label="Image", height=256, tool="editor", type="pil") | |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5) | |
if is_colab: | |
model_name.change(on_model_change, inputs=model_name, outputs=[custom_model_group, prompt], queue=False) | |
custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None) | |
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery) | |
steps.change(on_steps_change, inputs=[steps], outputs=[], queue=False) | |
inputs = [model_name, prompt, guidance, steps, n_images, width, height, seed, image, strength, neg_prompt] | |
outputs = [gallery, error_output] | |
prompt.submit(inference, inputs=inputs, outputs=outputs) | |
generate.click(inference, inputs=inputs, outputs=outputs) | |
ex = gr.Examples([ | |
[models[7].name, "tiny cute and adorable kitten adventurer dressed in a warm overcoat with survival gear on a winters day", 7.5, 25], | |
[models[4].name, "portrait of dwayne johnson", 7.0, 35], | |
[models[5].name, "portrait of a beautiful alyx vance half life", 10, 25], | |
[models[6].name, "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7.0, 30], | |
[models[5].name, "fantasy portrait painting, digital art", 4.0, 20], | |
], inputs=[model_name, prompt, guidance, steps], outputs=outputs, fn=inference, cache_examples=False) | |
gr.HTML(""" | |
<div style="border-top: 1px solid #303030;"> | |
<br> | |
<p>Models by <a href="https://huggingface.co/nitrosocke">@nitrosocke</a>, <a href="https://twitter.com/haruu1367">@haruu1367</a>, <a href="https://twitter.com/DGSpitzer">@Helixngc7293</a>, <a href="https://twitter.com/dal_mack">@dal_mack</a>, <a href="https://twitter.com/prompthero">@prompthero</a> and others. ❤️</p> | |
<p>This space uses the <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver++</a> sampler by <a href="https://arxiv.org/abs/2206.00927">Cheng Lu, et al.</a>.</p> | |
<p>Space by:<br> | |
<a href="https://twitter.com/hahahahohohe"><img src="https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social" alt="Twitter Follow"></a><br> | |
<a href="https://github.com/qunash"><img alt="GitHub followers" src="https://img.shields.io/github/followers/qunash?style=social" alt="Github Follow"></a></p><br><br> | |
<a href="https://www.buymeacoffee.com/anzorq" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 45px !important;width: 162px !important;" ></a><br><br> | |
<p><img src="https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion" alt="visitors"></p> | |
</div> | |
""") | |
demo.load(update_state_info, inputs=state_info, outputs=state_info, every=0.5, show_progress=False) | |
print(f"Space built in {time.time() - start_time:.2f} seconds") | |
# if not is_colab: | |
demo.queue(concurrency_count=1) | |
demo.launch(debug=is_colab, share=is_colab) | |