Spaces:
Runtime error
Runtime error
AdamOswald1
commited on
Commit
•
35e555c
1
Parent(s):
0f7781e
Update app.py
Browse files
app.py
CHANGED
@@ -6,9 +6,13 @@ import utils
|
|
6 |
import datetime
|
7 |
import time
|
8 |
import psutil
|
|
|
|
|
9 |
|
10 |
start_time = time.time()
|
11 |
is_colab = utils.is_google_colab()
|
|
|
|
|
12 |
|
13 |
class Model:
|
14 |
def __init__(self, name, path="", prefix=""):
|
@@ -90,6 +94,14 @@ def error_str(error, title="Error"):
|
|
90 |
return f"""#### {title}
|
91 |
{error}""" if error else ""
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
def custom_model_changed(path):
|
94 |
models[0].path = path
|
95 |
global current_model
|
@@ -101,8 +113,17 @@ def on_model_change(model_name):
|
|
101 |
|
102 |
return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix)
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
def inference(model_name, prompt, guidance, steps, n_images=1, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
|
105 |
|
|
|
|
|
106 |
print(psutil.virtual_memory()) # print memory usage
|
107 |
|
108 |
global current_model
|
@@ -111,17 +132,21 @@ def inference(model_name, prompt, guidance, steps, n_images=1, width=512, height
|
|
111 |
current_model = model
|
112 |
model_path = current_model.path
|
113 |
|
114 |
-
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
|
|
|
|
|
|
|
|
|
115 |
|
116 |
try:
|
117 |
if img is not None:
|
118 |
-
return img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator), None
|
119 |
else:
|
120 |
-
return txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator), None
|
121 |
except Exception as e:
|
122 |
return None, error_str(e)
|
123 |
|
124 |
-
def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator):
|
125 |
|
126 |
print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")
|
127 |
|
@@ -131,6 +156,8 @@ def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width,
|
|
131 |
if model_path != current_model_path or last_mode != "txt2img":
|
132 |
current_model_path = model_path
|
133 |
|
|
|
|
|
134 |
if is_colab or current_model == custom_model:
|
135 |
pipe = StableDiffusionPipeline.from_pretrained(
|
136 |
current_model_path,
|
@@ -161,11 +188,14 @@ def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width,
|
|
161 |
guidance_scale = guidance,
|
162 |
width = width,
|
163 |
height = height,
|
164 |
-
generator = generator
|
|
|
|
|
|
|
165 |
|
166 |
return replace_nsfw_images(result)
|
167 |
|
168 |
-
def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator):
|
169 |
|
170 |
print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")
|
171 |
|
@@ -175,6 +205,8 @@ def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance
|
|
175 |
if model_path != current_model_path or last_mode != "img2img":
|
176 |
current_model_path = model_path
|
177 |
|
|
|
|
|
178 |
if is_colab or current_model == custom_model:
|
179 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
180 |
current_model_path,
|
@@ -209,8 +241,11 @@ def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance
|
|
209 |
guidance_scale = guidance,
|
210 |
# width = width,
|
211 |
# height = height,
|
212 |
-
generator = generator
|
213 |
-
|
|
|
|
|
|
|
214 |
return replace_nsfw_images(result)
|
215 |
|
216 |
def replace_nsfw_images(results):
|
@@ -223,9 +258,9 @@ def replace_nsfw_images(results):
|
|
223 |
results.images[i] = Image.open("nsfw.png")
|
224 |
return results.images
|
225 |
|
226 |
-
css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
|
227 |
-
"""
|
228 |
-
with gr.Blocks(css=css) as demo:
|
229 |
gr.HTML(
|
230 |
f"""
|
231 |
<div class="finetuned-diffusion-div">
|
@@ -261,6 +296,7 @@ with gr.Blocks(css=css) as demo:
|
|
261 |
# image_out = gr.Image(height=512)
|
262 |
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
|
263 |
|
|
|
264 |
error_output = gr.Markdown()
|
265 |
|
266 |
with gr.Column(scale=45):
|
@@ -286,9 +322,10 @@ with gr.Blocks(css=css) as demo:
|
|
286 |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
287 |
|
288 |
if is_colab:
|
289 |
-
|
290 |
-
|
291 |
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
|
|
|
292 |
|
293 |
inputs = [model_name, prompt, guidance, steps, n_images, width, height, seed, image, strength, neg_prompt]
|
294 |
outputs = [gallery, error_output]
|
@@ -316,8 +353,10 @@ with gr.Blocks(css=css) as demo:
|
|
316 |
</div>
|
317 |
""")
|
318 |
|
|
|
|
|
319 |
print(f"Space built in {time.time() - start_time:.2f} seconds")
|
320 |
|
321 |
-
if not is_colab:
|
322 |
-
|
323 |
demo.launch(debug=is_colab, share=is_colab)
|
|
|
6 |
import datetime
|
7 |
import time
|
8 |
import psutil
|
9 |
+
import random
|
10 |
+
|
11 |
|
12 |
start_time = time.time()
|
13 |
is_colab = utils.is_google_colab()
|
14 |
+
state = None
|
15 |
+
current_steps = 25
|
16 |
|
17 |
class Model:
|
18 |
def __init__(self, name, path="", prefix=""):
|
|
|
94 |
return f"""#### {title}
|
95 |
{error}""" if error else ""
|
96 |
|
97 |
+
def update_state(new_state):
|
98 |
+
global state
|
99 |
+
state = new_state
|
100 |
+
|
101 |
+
def update_state_info(old_state):
|
102 |
+
if state and state != old_state:
|
103 |
+
return gr.update(value=state)
|
104 |
+
|
105 |
def custom_model_changed(path):
|
106 |
models[0].path = path
|
107 |
global current_model
|
|
|
113 |
|
114 |
return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix)
|
115 |
|
116 |
+
def on_steps_change(steps):
|
117 |
+
global current_steps
|
118 |
+
current_steps = steps
|
119 |
+
|
120 |
+
def pipe_callback(step: int, timestep: int, latents: torch.FloatTensor):
|
121 |
+
update_state(f"{step}/{current_steps} steps")#\nTime left, sec: {timestep/100:.0f}")
|
122 |
+
|
123 |
def inference(model_name, prompt, guidance, steps, n_images=1, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
|
124 |
|
125 |
+
update_state(" ")
|
126 |
+
|
127 |
print(psutil.virtual_memory()) # print memory usage
|
128 |
|
129 |
global current_model
|
|
|
132 |
current_model = model
|
133 |
model_path = current_model.path
|
134 |
|
135 |
+
# generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
|
136 |
+
if seed == 0:
|
137 |
+
seed = random.randint(0, 2147483647)
|
138 |
+
|
139 |
+
generator = torch.Generator('cuda').manual_seed(seed)
|
140 |
|
141 |
try:
|
142 |
if img is not None:
|
143 |
+
return img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed), None
|
144 |
else:
|
145 |
+
return txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed), None
|
146 |
except Exception as e:
|
147 |
return None, error_str(e)
|
148 |
|
149 |
+
def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed):
|
150 |
|
151 |
print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")
|
152 |
|
|
|
156 |
if model_path != current_model_path or last_mode != "txt2img":
|
157 |
current_model_path = model_path
|
158 |
|
159 |
+
update_state("Loading text-to-image model...")
|
160 |
+
|
161 |
if is_colab or current_model == custom_model:
|
162 |
pipe = StableDiffusionPipeline.from_pretrained(
|
163 |
current_model_path,
|
|
|
188 |
guidance_scale = guidance,
|
189 |
width = width,
|
190 |
height = height,
|
191 |
+
generator = generator,
|
192 |
+
callback=pipe_callback)
|
193 |
+
|
194 |
+
update_state(f"Done. Seed: {seed}")
|
195 |
|
196 |
return replace_nsfw_images(result)
|
197 |
|
198 |
+
def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed):
|
199 |
|
200 |
print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")
|
201 |
|
|
|
205 |
if model_path != current_model_path or last_mode != "img2img":
|
206 |
current_model_path = model_path
|
207 |
|
208 |
+
update_state("Loading image-to-image model...")
|
209 |
+
|
210 |
if is_colab or current_model == custom_model:
|
211 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
212 |
current_model_path,
|
|
|
241 |
guidance_scale = guidance,
|
242 |
# width = width,
|
243 |
# height = height,
|
244 |
+
generator = generator,
|
245 |
+
callback=pipe_callback)
|
246 |
+
|
247 |
+
update_state(f"Done. Seed: {seed}")
|
248 |
+
|
249 |
return replace_nsfw_images(result)
|
250 |
|
251 |
def replace_nsfw_images(results):
|
|
|
258 |
results.images[i] = Image.open("nsfw.png")
|
259 |
return results.images
|
260 |
|
261 |
+
# css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
|
262 |
+
# """
|
263 |
+
with gr.Blocks(css="style.css") as demo:
|
264 |
gr.HTML(
|
265 |
f"""
|
266 |
<div class="finetuned-diffusion-div">
|
|
|
296 |
# image_out = gr.Image(height=512)
|
297 |
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
|
298 |
|
299 |
+
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(container=False)
|
300 |
error_output = gr.Markdown()
|
301 |
|
302 |
with gr.Column(scale=45):
|
|
|
322 |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
323 |
|
324 |
if is_colab:
|
325 |
+
model_name.change(on_model_change, inputs=model_name, outputs=[custom_model_group, prompt], queue=False)
|
326 |
+
custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
|
327 |
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
|
328 |
+
steps.change(on_steps_change, inputs=[steps], outputs=[], queue=False)
|
329 |
|
330 |
inputs = [model_name, prompt, guidance, steps, n_images, width, height, seed, image, strength, neg_prompt]
|
331 |
outputs = [gallery, error_output]
|
|
|
353 |
</div>
|
354 |
""")
|
355 |
|
356 |
+
demo.load(update_state_info, inputs=state_info, outputs=state_info, every=0.5, show_progress=False)
|
357 |
+
|
358 |
print(f"Space built in {time.time() - start_time:.2f} seconds")
|
359 |
|
360 |
+
# if not is_colab:
|
361 |
+
demo.queue(concurrency_count=1)
|
362 |
demo.launch(debug=is_colab, share=is_colab)
|