AdamOswald1 commited on
Commit
cf62a19
1 Parent(s): 60b0d5d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -9
app.py CHANGED
@@ -76,7 +76,7 @@ current_model_path = current_model.path
76
  if is_colab:
77
  pipe = StableDiffusionPipeline.from_pretrained(
78
  current_model.path,
79
- torch_dtype=torch.float16,
80
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
81
  safety_checker=lambda images, clip_input: (images, False)
82
  )
@@ -84,13 +84,20 @@ if is_colab:
84
  else:
85
  pipe = StableDiffusionPipeline.from_pretrained(
86
  current_model.path,
87
- torch_dtype=torch.float16,
88
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
89
  )
90
 
91
- if torch.cuda.is_available():
92
- pipe = pipe.to("cuda")
93
- pipe.enable_xformers_memory_efficient_attention()
 
 
 
 
 
 
 
94
 
95
  device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
96
 
@@ -165,22 +172,29 @@ def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width,
165
  if is_colab or current_model == custom_model:
166
  pipe = StableDiffusionPipeline.from_pretrained(
167
  current_model_path,
168
- torch_dtype=torch.float16,
169
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
170
  safety_checker=lambda images, clip_input: (images, False)
171
  )
172
  else:
173
  pipe = StableDiffusionPipeline.from_pretrained(
174
  current_model_path,
175
- torch_dtype=torch.float16,
176
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
177
  )
178
  # pipe = pipe.to("cpu")
179
  # pipe = current_model.pipe_t2i
180
 
 
 
 
 
181
  if torch.cuda.is_available():
182
  pipe = pipe.to("cuda")
183
  pipe.enable_xformers_memory_efficient_attention()
 
 
 
184
  last_mode = "txt2img"
185
 
186
  prompt = current_model.prefix + prompt
@@ -214,22 +228,29 @@ def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance
214
  if is_colab or current_model == custom_model:
215
  pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
216
  current_model_path,
217
- torch_dtype=torch.float16,
218
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
219
  safety_checker=lambda images, clip_input: (images, False)
220
  )
221
  else:
222
  pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
223
  current_model_path,
224
- torch_dtype=torch.float16,
225
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
226
  )
227
  # pipe = pipe.to("cpu")
228
  # pipe = current_model.pipe_i2i
229
 
 
 
 
 
230
  if torch.cuda.is_available():
231
  pipe = pipe.to("cuda")
232
  pipe.enable_xformers_memory_efficient_attention()
 
 
 
233
  last_mode = "img2img"
234
 
235
  prompt = current_model.prefix + prompt
 
76
  if is_colab:
77
  pipe = StableDiffusionPipeline.from_pretrained(
78
  current_model.path,
79
+ torch_dtype=torch.get_default_dtype(),
80
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
81
  safety_checker=lambda images, clip_input: (images, False)
82
  )
 
84
  else:
85
  pipe = StableDiffusionPipeline.from_pretrained(
86
  current_model.path,
87
+ torch_dtype=torch.get_default_dtype(),
88
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
89
  )
90
 
91
+ to_cuda(torch, pipe)
92
+
93
+ def to_cuda(torch, pipe):
94
+ try:
95
+ if torch.cuda.is_available():
96
+ pipe = pipe.to("cuda")
97
+ pipe.enable_xformers_memory_efficient_attention()
98
+ return True
99
+ except:
100
+ return False
101
 
102
  device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
103
 
 
172
  if is_colab or current_model == custom_model:
173
  pipe = StableDiffusionPipeline.from_pretrained(
174
  current_model_path,
175
+ torch_dtype=torch.get_default_dtype(),
176
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
177
  safety_checker=lambda images, clip_input: (images, False)
178
  )
179
  else:
180
  pipe = StableDiffusionPipeline.from_pretrained(
181
  current_model_path,
182
+ torch_dtype=torch.get_default_dtype(),
183
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
184
  )
185
  # pipe = pipe.to("cpu")
186
  # pipe = current_model.pipe_t2i
187
 
188
+ to_cuda(torch, pipe)
189
+
190
+ def to_cuda(torch, pipe):
191
+ try:
192
  if torch.cuda.is_available():
193
  pipe = pipe.to("cuda")
194
  pipe.enable_xformers_memory_efficient_attention()
195
+ return True
196
+ except:
197
+ return False
198
  last_mode = "txt2img"
199
 
200
  prompt = current_model.prefix + prompt
 
228
  if is_colab or current_model == custom_model:
229
  pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
230
  current_model_path,
231
+ torch_dtype=torch.get_default_dtype(),
232
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
233
  safety_checker=lambda images, clip_input: (images, False)
234
  )
235
  else:
236
  pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
237
  current_model_path,
238
+ torch_dtype=torch.get_default_dtype(),
239
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
240
  )
241
  # pipe = pipe.to("cpu")
242
  # pipe = current_model.pipe_i2i
243
 
244
+ to_cuda(torch, pipe)
245
+
246
+ def to_cuda(torch, pipe):
247
+ try:
248
  if torch.cuda.is_available():
249
  pipe = pipe.to("cuda")
250
  pipe.enable_xformers_memory_efficient_attention()
251
+ return True
252
+ except:
253
+ return False
254
  last_mode = "img2img"
255
 
256
  prompt = current_model.prefix + prompt