Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
from collections import OrderedDict | |
from ldm.modules.extra_condition.api import ExtraCondition | |
from ldm.modules.diffusionmodules.util import zero_module | |
def conv_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D convolution module. | |
""" | |
if dims == 1: | |
return nn.Conv1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.Conv2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.Conv3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
def avg_pool_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D average pooling module. | |
""" | |
if dims == 1: | |
return nn.AvgPool1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.AvgPool2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.AvgPool3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
class Downsample(nn.Module): | |
""" | |
A downsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
downsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
stride = 2 if dims != 3 else (1, 2, 2) | |
if use_conv: | |
self.op = conv_nd( | |
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding | |
) | |
else: | |
assert self.channels == self.out_channels | |
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
return self.op(x) | |
class ResnetBlock(nn.Module): | |
def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True): | |
super().__init__() | |
ps = ksize // 2 | |
if in_c != out_c or sk == False: | |
self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps) | |
else: | |
# print('n_in') | |
self.in_conv = None | |
self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1) | |
self.act = nn.ReLU() | |
self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps) | |
if sk == False: | |
self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps) | |
else: | |
self.skep = None | |
self.down = down | |
if self.down == True: | |
self.down_opt = Downsample(in_c, use_conv=use_conv) | |
def forward(self, x): | |
if self.down == True: | |
x = self.down_opt(x) | |
if self.in_conv is not None: # edit | |
x = self.in_conv(x) | |
h = self.block1(x) | |
h = self.act(h) | |
h = self.block2(h) | |
if self.skep is not None: | |
return h + self.skep(x) | |
else: | |
return h + x | |
class Adapter(nn.Module): | |
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True): | |
super(Adapter, self).__init__() | |
self.unshuffle = nn.PixelUnshuffle(8) | |
self.channels = channels | |
self.nums_rb = nums_rb | |
self.body = [] | |
for i in range(len(channels)): | |
for j in range(nums_rb): | |
if (i != 0) and (j == 0): | |
self.body.append( | |
ResnetBlock(channels[i - 1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv)) | |
else: | |
self.body.append( | |
ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv)) | |
self.body = nn.ModuleList(self.body) | |
self.conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1) | |
def forward(self, x): | |
# unshuffle | |
x = self.unshuffle(x) | |
# extract features | |
features = [] | |
x = self.conv_in(x) | |
for i in range(len(self.channels)): | |
for j in range(self.nums_rb): | |
idx = i * self.nums_rb + j | |
x = self.body[idx](x) | |
features.append(x) | |
return features | |
class LayerNorm(nn.LayerNorm): | |
"""Subclass torch's LayerNorm to handle fp16.""" | |
def forward(self, x: torch.Tensor): | |
orig_type = x.dtype | |
ret = super().forward(x.type(torch.float32)) | |
return ret.type(orig_type) | |
class QuickGELU(nn.Module): | |
def forward(self, x: torch.Tensor): | |
return x * torch.sigmoid(1.702 * x) | |
class ResidualAttentionBlock(nn.Module): | |
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): | |
super().__init__() | |
self.attn = nn.MultiheadAttention(d_model, n_head) | |
self.ln_1 = LayerNorm(d_model) | |
self.mlp = nn.Sequential( | |
OrderedDict([("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), | |
("c_proj", nn.Linear(d_model * 4, d_model))])) | |
self.ln_2 = LayerNorm(d_model) | |
self.attn_mask = attn_mask | |
def attention(self, x: torch.Tensor): | |
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None | |
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] | |
def forward(self, x: torch.Tensor): | |
x = x + self.attention(self.ln_1(x)) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
class StyleAdapter(nn.Module): | |
def __init__(self, width=1024, context_dim=768, num_head=8, n_layes=3, num_token=4): | |
super().__init__() | |
scale = width ** -0.5 | |
self.transformer_layes = nn.Sequential(*[ResidualAttentionBlock(width, num_head) for _ in range(n_layes)]) | |
self.num_token = num_token | |
self.style_embedding = nn.Parameter(torch.randn(1, num_token, width) * scale) | |
self.ln_post = LayerNorm(width) | |
self.ln_pre = LayerNorm(width) | |
self.proj = nn.Parameter(scale * torch.randn(width, context_dim)) | |
def forward(self, x): | |
# x shape [N, HW+1, C] | |
style_embedding = self.style_embedding + torch.zeros( | |
(x.shape[0], self.num_token, self.style_embedding.shape[-1]), device=x.device) | |
x = torch.cat([x, style_embedding], dim=1) | |
x = self.ln_pre(x) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.transformer_layes(x) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.ln_post(x[:, -self.num_token:, :]) | |
x = x @ self.proj | |
return x | |
class ResnetBlock_light(nn.Module): | |
def __init__(self, in_c): | |
super().__init__() | |
self.block1 = nn.Conv2d(in_c, in_c, 3, 1, 1) | |
self.act = nn.ReLU() | |
self.block2 = nn.Conv2d(in_c, in_c, 3, 1, 1) | |
def forward(self, x): | |
h = self.block1(x) | |
h = self.act(h) | |
h = self.block2(h) | |
return h + x | |
class extractor(nn.Module): | |
def __init__(self, in_c, inter_c, out_c, nums_rb, down=False): | |
super().__init__() | |
self.in_conv = nn.Conv2d(in_c, inter_c, 1, 1, 0) | |
self.body = [] | |
for _ in range(nums_rb): | |
self.body.append(ResnetBlock_light(inter_c)) | |
self.body = nn.Sequential(*self.body) | |
self.out_conv = nn.Conv2d(inter_c, out_c, 1, 1, 0) | |
self.down = down | |
if self.down == True: | |
self.down_opt = Downsample(in_c, use_conv=False) | |
def forward(self, x): | |
if self.down == True: | |
x = self.down_opt(x) | |
x = self.in_conv(x) | |
x = self.body(x) | |
x = self.out_conv(x) | |
return x | |
class Adapter_light(nn.Module): | |
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64): | |
super(Adapter_light, self).__init__() | |
self.unshuffle = nn.PixelUnshuffle(8) | |
self.channels = channels | |
self.nums_rb = nums_rb | |
self.body = [] | |
for i in range(len(channels)): | |
if i == 0: | |
self.body.append(extractor(in_c=cin, inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=False)) | |
else: | |
self.body.append(extractor(in_c=channels[i-1], inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=True)) | |
self.body = nn.ModuleList(self.body) | |
def forward(self, x): | |
# unshuffle | |
x = self.unshuffle(x) | |
# extract features | |
features = [] | |
for i in range(len(self.channels)): | |
x = self.body[i](x) | |
features.append(x) | |
return features | |
class CoAdapterFuser(nn.Module): | |
def __init__(self, unet_channels=[320, 640, 1280, 1280], width=768, num_head=8, n_layes=3): | |
super(CoAdapterFuser, self).__init__() | |
scale = width ** 0.5 | |
# 16, maybe large enough for the number of adapters? | |
self.task_embedding = nn.Parameter(scale * torch.randn(16, width)) | |
self.positional_embedding = nn.Parameter(scale * torch.randn(len(unet_channels), width)) | |
self.spatial_feat_mapping = nn.ModuleList() | |
for ch in unet_channels: | |
self.spatial_feat_mapping.append(nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(ch, width), | |
)) | |
self.transformer_layes = nn.Sequential(*[ResidualAttentionBlock(width, num_head) for _ in range(n_layes)]) | |
self.ln_post = LayerNorm(width) | |
self.ln_pre = LayerNorm(width) | |
self.spatial_ch_projs = nn.ModuleList() | |
for ch in unet_channels: | |
self.spatial_ch_projs.append(zero_module(nn.Linear(width, ch))) | |
self.seq_proj = nn.Parameter(torch.zeros(width, width)) | |
def forward(self, features): | |
if len(features) == 0: | |
return None, None | |
inputs = [] | |
for cond_name in features.keys(): | |
task_idx = getattr(ExtraCondition, cond_name).value | |
if not isinstance(features[cond_name], list): | |
inputs.append(features[cond_name] + self.task_embedding[task_idx]) | |
continue | |
feat_seq = [] | |
for idx, feature_map in enumerate(features[cond_name]): | |
feature_vec = torch.mean(feature_map, dim=(2, 3)) | |
feature_vec = self.spatial_feat_mapping[idx](feature_vec) | |
feat_seq.append(feature_vec) | |
feat_seq = torch.stack(feat_seq, dim=1) # Nx4xC | |
feat_seq = feat_seq + self.task_embedding[task_idx] | |
feat_seq = feat_seq + self.positional_embedding | |
inputs.append(feat_seq) | |
x = torch.cat(inputs, dim=1) # NxLxC | |
x = self.ln_pre(x) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.transformer_layes(x) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.ln_post(x) | |
ret_feat_map = None | |
ret_feat_seq = None | |
cur_seq_idx = 0 | |
for cond_name in features.keys(): | |
if not isinstance(features[cond_name], list): | |
length = features[cond_name].size(1) | |
transformed_feature = features[cond_name] * ((x[:, cur_seq_idx:cur_seq_idx+length] @ self.seq_proj) + 1) | |
if ret_feat_seq is None: | |
ret_feat_seq = transformed_feature | |
else: | |
ret_feat_seq = torch.cat([ret_feat_seq, transformed_feature], dim=1) | |
cur_seq_idx += length | |
continue | |
length = len(features[cond_name]) | |
transformed_feature_list = [] | |
for idx in range(length): | |
alpha = self.spatial_ch_projs[idx](x[:, cur_seq_idx+idx]) | |
alpha = alpha.unsqueeze(-1).unsqueeze(-1) + 1 | |
transformed_feature_list.append(features[cond_name][idx] * alpha) | |
if ret_feat_map is None: | |
ret_feat_map = transformed_feature_list | |
else: | |
ret_feat_map = list(map(lambda x, y: x + y, ret_feat_map, transformed_feature_list)) | |
cur_seq_idx += length | |
assert cur_seq_idx == x.size(1) | |
return ret_feat_map, ret_feat_seq | |