File size: 9,252 Bytes
a056b0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import cv2
from basicsr.utils import img2tensor, tensor2img

_BATCH_NORM = nn.BatchNorm2d
_BOTTLENECK_EXPANSION = 4

import blobfile as bf

def _list_image_files_recursively(data_dir):
    results = []
    for entry in sorted(bf.listdir(data_dir)):
        full_path = bf.join(data_dir, entry)
        ext = entry.split(".")[-1]
        if "." in entry and ext.lower() in ["jpg", "jpeg", "png", "gif"]:
            results.append(full_path)
        elif bf.isdir(full_path):
            results.extend(_list_image_files_recursively(full_path))
    return results
    
def uint82bin(n, count=8):
    """returns the binary of integer n, count refers to amount of bits"""
    return ''.join([str((n >> y) & 1) for y in range(count - 1, -1, -1)])


def labelcolormap(N):
    if N == 35:  # cityscape
        cmap = np.array([(0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (111, 74, 0), (81, 0, 81),
                         (128, 64, 128), (244, 35, 232), (250, 170, 160), (230, 150, 140), (70, 70, 70), (102, 102, 156), (190, 153, 153),
                         (180, 165, 180), (150, 100, 100), (150, 120, 90), (153, 153, 153), (153, 153, 153), (250, 170, 30), (220, 220, 0),
                         (107, 142, 35), (152, 251, 152), (70, 130, 180), (220, 20, 60), (255, 0, 0), (0, 0, 142), (0, 0, 70),
                         (0, 60, 100), (0, 0, 90), (0, 0, 110), (0, 80, 100), (0, 0, 230), (119, 11, 32), (0, 0, 142)],
                        dtype=np.uint8)
    else:
        cmap = np.zeros((N, 3), dtype=np.uint8)
        for i in range(N):
            r, g, b = 0, 0, 0
            id = i + 1  # let's give 0 a color
            for j in range(7):
                str_id = uint82bin(id)
                r = r ^ (np.uint8(str_id[-1]) << (7 - j))
                g = g ^ (np.uint8(str_id[-2]) << (7 - j))
                b = b ^ (np.uint8(str_id[-3]) << (7 - j))
                id = id >> 3
            cmap[i, 0] =  r
            cmap[i, 1] =  g
            cmap[i, 2] =  b
     
    return cmap


class Colorize(object):
    def __init__(self, n=182):
        self.cmap = labelcolormap(n)

    def __call__(self, gray_image):
        size = gray_image.shape
        color_image = np.zeros((3, size[0], size[1])) 
     
        for label in range(0, len(self.cmap)):
            mask = (label == gray_image ) 
            color_image[0][mask] = self.cmap[label][0]
            color_image[1][mask] = self.cmap[label][1]
            color_image[2][mask] = self.cmap[label][2]

        return color_image

class _ConvBnReLU(nn.Sequential):
    """
    Cascade of 2D convolution, batch norm, and ReLU.
    """

    BATCH_NORM = _BATCH_NORM

    def __init__(
        self, in_ch, out_ch, kernel_size, stride, padding, dilation, relu=True
    ):
        super(_ConvBnReLU, self).__init__()
        self.add_module(
            "conv",
            nn.Conv2d(
                in_ch, out_ch, kernel_size, stride, padding, dilation, bias=False
            ),
        )
        self.add_module("bn", _BATCH_NORM(out_ch, eps=1e-5, momentum=1 - 0.999))

        if relu:
            self.add_module("relu", nn.ReLU())

class _Bottleneck(nn.Module):
    """
    Bottleneck block of MSRA ResNet.
    """

    def __init__(self, in_ch, out_ch, stride, dilation, downsample):
        super(_Bottleneck, self).__init__()
        mid_ch = out_ch // _BOTTLENECK_EXPANSION
        self.reduce = _ConvBnReLU(in_ch, mid_ch, 1, stride, 0, 1, True)
        self.conv3x3 = _ConvBnReLU(mid_ch, mid_ch, 3, 1, dilation, dilation, True)
        self.increase = _ConvBnReLU(mid_ch, out_ch, 1, 1, 0, 1, False)
        self.shortcut = (
            _ConvBnReLU(in_ch, out_ch, 1, stride, 0, 1, False)
            if downsample
            else nn.Identity()
        )

    def forward(self, x):
        h = self.reduce(x)
        h = self.conv3x3(h)
        h = self.increase(h)
        h += self.shortcut(x)
        return F.relu(h)

class _ResLayer(nn.Sequential):
    """
    Residual layer with multi grids
    """

    def __init__(self, n_layers, in_ch, out_ch, stride, dilation, multi_grids=None):
        super(_ResLayer, self).__init__()

        if multi_grids is None:
            multi_grids = [1 for _ in range(n_layers)]
        else:
            assert n_layers == len(multi_grids)

        # Downsampling is only in the first block
        for i in range(n_layers):
            self.add_module(
                "block{}".format(i + 1),
                _Bottleneck(
                    in_ch=(in_ch if i == 0 else out_ch),
                    out_ch=out_ch,
                    stride=(stride if i == 0 else 1),
                    dilation=dilation * multi_grids[i],
                    downsample=(True if i == 0 else False),
                ),
            )

class _Stem(nn.Sequential):
    """
    The 1st conv layer.
    Note that the max pooling is different from both MSRA and FAIR ResNet.
    """

    def __init__(self, out_ch):
        super(_Stem, self).__init__()
        self.add_module("conv1", _ConvBnReLU(3, out_ch, 7, 2, 3, 1))
        self.add_module("pool", nn.MaxPool2d(3, 2, 1, ceil_mode=True))

class _ASPP(nn.Module):
    """
    Atrous spatial pyramid pooling (ASPP)
    """

    def __init__(self, in_ch, out_ch, rates):
        super(_ASPP, self).__init__()
        for i, rate in enumerate(rates):
            self.add_module(
                "c{}".format(i),
                nn.Conv2d(in_ch, out_ch, 3, 1, padding=rate, dilation=rate, bias=True),
            )

        for m in self.children():
            nn.init.normal_(m.weight, mean=0, std=0.01)
            nn.init.constant_(m.bias, 0)

    def forward(self, x):
        return sum([stage(x) for stage in self.children()])

class MSC(nn.Module):
    """
    Multi-scale inputs
    """

    def __init__(self, base, scales=None):
        super(MSC, self).__init__()
        self.base = base
        if scales:
            self.scales = scales
        else:
            self.scales = [0.5, 0.75]

    def forward(self, x):
        # Original
        logits = self.base(x)
        _, _, H, W = logits.shape
        interp = lambda l: F.interpolate(
            l, size=(H, W), mode="bilinear", align_corners=False
        )

        # Scaled
        logits_pyramid = []
        for p in self.scales:
            h = F.interpolate(x, scale_factor=p, mode="bilinear", align_corners=False)
            logits_pyramid.append(self.base(h))

        # Pixel-wise max
        logits_all = [logits] + [interp(l) for l in logits_pyramid]
        logits_max = torch.max(torch.stack(logits_all), dim=0)[0]

        return logits_max

class DeepLabV2(nn.Sequential):
    """
    DeepLab v2: Dilated ResNet + ASPP
    Output stride is fixed at 8
    """

    def __init__(self, n_classes=182, n_blocks=[3, 4, 23, 3], atrous_rates=[6, 12, 18, 24]):
        super(DeepLabV2, self).__init__()
        ch = [64 * 2 ** p for p in range(6)]
        self.add_module("layer1", _Stem(ch[0]))
        self.add_module("layer2", _ResLayer(n_blocks[0], ch[0], ch[2], 1, 1))
        self.add_module("layer3", _ResLayer(n_blocks[1], ch[2], ch[3], 2, 1))
        self.add_module("layer4", _ResLayer(n_blocks[2], ch[3], ch[4], 1, 2))
        self.add_module("layer5", _ResLayer(n_blocks[3], ch[4], ch[5], 1, 4))
        self.add_module("aspp", _ASPP(ch[5], n_classes, atrous_rates))

    def freeze_bn(self):
        for m in self.modules():
            if isinstance(m, _ConvBnReLU.BATCH_NORM):
                m.eval()

def preprocessing(image, device):
    # Resize
    scale = 640 / max(image.shape[:2])
    image = cv2.resize(image, dsize=None, fx=scale, fy=scale)
    raw_image = image.astype(np.uint8)

    # Subtract mean values
    image = image.astype(np.float32)
    image -= np.array(
        [
            float(104.008),
            float(116.669),
            float(122.675),
        ]
    )

    # Convert to torch.Tensor and add "batch" axis
    image = torch.from_numpy(image.transpose(2, 0, 1)).float().unsqueeze(0)
    image = image.to(device)

    return image, raw_image

# Model setup
def seger():
    model = MSC(
            base=DeepLabV2(
                n_classes=182, n_blocks=[3, 4, 23, 3], atrous_rates=[6, 12, 18, 24]
            ),
            scales=[0.5, 0.75],
        )
    state_dict = torch.load('models/deeplabv2_resnet101_msc-cocostuff164k-100000.pth')
    model.load_state_dict(state_dict)  # to skip ASPP

    return model

if __name__ == '__main__':
    device = 'cuda'
    model = seger()
    model.to(device)
    model.eval()
    with torch.no_grad():
        im = cv2.imread('/group/30042/chongmou/ft_local/Diffusion/baselines/SPADE/datasets/coco_stuff/val_img/000000000785.jpg', cv2.IMREAD_COLOR)
        im, raw_im = preprocessing(im, 'cuda')
        _, _, H, W = im.shape

        # Image -> Probability map
        logits = model(im)
        logits = F.interpolate(logits, size=(H, W), mode="bilinear", align_corners=False)
        probs = F.softmax(logits, dim=1)[0]
        probs = probs.cpu().data.numpy()
        labelmap = np.argmax(probs, axis=0)
        print(labelmap.shape, np.max(labelmap), np.min(labelmap))
        cv2.imwrite('mask.png', labelmap)