Spaces:
Runtime error
Runtime error
File size: 9,252 Bytes
a056b0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import cv2
from basicsr.utils import img2tensor, tensor2img
_BATCH_NORM = nn.BatchNorm2d
_BOTTLENECK_EXPANSION = 4
import blobfile as bf
def _list_image_files_recursively(data_dir):
results = []
for entry in sorted(bf.listdir(data_dir)):
full_path = bf.join(data_dir, entry)
ext = entry.split(".")[-1]
if "." in entry and ext.lower() in ["jpg", "jpeg", "png", "gif"]:
results.append(full_path)
elif bf.isdir(full_path):
results.extend(_list_image_files_recursively(full_path))
return results
def uint82bin(n, count=8):
"""returns the binary of integer n, count refers to amount of bits"""
return ''.join([str((n >> y) & 1) for y in range(count - 1, -1, -1)])
def labelcolormap(N):
if N == 35: # cityscape
cmap = np.array([(0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (111, 74, 0), (81, 0, 81),
(128, 64, 128), (244, 35, 232), (250, 170, 160), (230, 150, 140), (70, 70, 70), (102, 102, 156), (190, 153, 153),
(180, 165, 180), (150, 100, 100), (150, 120, 90), (153, 153, 153), (153, 153, 153), (250, 170, 30), (220, 220, 0),
(107, 142, 35), (152, 251, 152), (70, 130, 180), (220, 20, 60), (255, 0, 0), (0, 0, 142), (0, 0, 70),
(0, 60, 100), (0, 0, 90), (0, 0, 110), (0, 80, 100), (0, 0, 230), (119, 11, 32), (0, 0, 142)],
dtype=np.uint8)
else:
cmap = np.zeros((N, 3), dtype=np.uint8)
for i in range(N):
r, g, b = 0, 0, 0
id = i + 1 # let's give 0 a color
for j in range(7):
str_id = uint82bin(id)
r = r ^ (np.uint8(str_id[-1]) << (7 - j))
g = g ^ (np.uint8(str_id[-2]) << (7 - j))
b = b ^ (np.uint8(str_id[-3]) << (7 - j))
id = id >> 3
cmap[i, 0] = r
cmap[i, 1] = g
cmap[i, 2] = b
return cmap
class Colorize(object):
def __init__(self, n=182):
self.cmap = labelcolormap(n)
def __call__(self, gray_image):
size = gray_image.shape
color_image = np.zeros((3, size[0], size[1]))
for label in range(0, len(self.cmap)):
mask = (label == gray_image )
color_image[0][mask] = self.cmap[label][0]
color_image[1][mask] = self.cmap[label][1]
color_image[2][mask] = self.cmap[label][2]
return color_image
class _ConvBnReLU(nn.Sequential):
"""
Cascade of 2D convolution, batch norm, and ReLU.
"""
BATCH_NORM = _BATCH_NORM
def __init__(
self, in_ch, out_ch, kernel_size, stride, padding, dilation, relu=True
):
super(_ConvBnReLU, self).__init__()
self.add_module(
"conv",
nn.Conv2d(
in_ch, out_ch, kernel_size, stride, padding, dilation, bias=False
),
)
self.add_module("bn", _BATCH_NORM(out_ch, eps=1e-5, momentum=1 - 0.999))
if relu:
self.add_module("relu", nn.ReLU())
class _Bottleneck(nn.Module):
"""
Bottleneck block of MSRA ResNet.
"""
def __init__(self, in_ch, out_ch, stride, dilation, downsample):
super(_Bottleneck, self).__init__()
mid_ch = out_ch // _BOTTLENECK_EXPANSION
self.reduce = _ConvBnReLU(in_ch, mid_ch, 1, stride, 0, 1, True)
self.conv3x3 = _ConvBnReLU(mid_ch, mid_ch, 3, 1, dilation, dilation, True)
self.increase = _ConvBnReLU(mid_ch, out_ch, 1, 1, 0, 1, False)
self.shortcut = (
_ConvBnReLU(in_ch, out_ch, 1, stride, 0, 1, False)
if downsample
else nn.Identity()
)
def forward(self, x):
h = self.reduce(x)
h = self.conv3x3(h)
h = self.increase(h)
h += self.shortcut(x)
return F.relu(h)
class _ResLayer(nn.Sequential):
"""
Residual layer with multi grids
"""
def __init__(self, n_layers, in_ch, out_ch, stride, dilation, multi_grids=None):
super(_ResLayer, self).__init__()
if multi_grids is None:
multi_grids = [1 for _ in range(n_layers)]
else:
assert n_layers == len(multi_grids)
# Downsampling is only in the first block
for i in range(n_layers):
self.add_module(
"block{}".format(i + 1),
_Bottleneck(
in_ch=(in_ch if i == 0 else out_ch),
out_ch=out_ch,
stride=(stride if i == 0 else 1),
dilation=dilation * multi_grids[i],
downsample=(True if i == 0 else False),
),
)
class _Stem(nn.Sequential):
"""
The 1st conv layer.
Note that the max pooling is different from both MSRA and FAIR ResNet.
"""
def __init__(self, out_ch):
super(_Stem, self).__init__()
self.add_module("conv1", _ConvBnReLU(3, out_ch, 7, 2, 3, 1))
self.add_module("pool", nn.MaxPool2d(3, 2, 1, ceil_mode=True))
class _ASPP(nn.Module):
"""
Atrous spatial pyramid pooling (ASPP)
"""
def __init__(self, in_ch, out_ch, rates):
super(_ASPP, self).__init__()
for i, rate in enumerate(rates):
self.add_module(
"c{}".format(i),
nn.Conv2d(in_ch, out_ch, 3, 1, padding=rate, dilation=rate, bias=True),
)
for m in self.children():
nn.init.normal_(m.weight, mean=0, std=0.01)
nn.init.constant_(m.bias, 0)
def forward(self, x):
return sum([stage(x) for stage in self.children()])
class MSC(nn.Module):
"""
Multi-scale inputs
"""
def __init__(self, base, scales=None):
super(MSC, self).__init__()
self.base = base
if scales:
self.scales = scales
else:
self.scales = [0.5, 0.75]
def forward(self, x):
# Original
logits = self.base(x)
_, _, H, W = logits.shape
interp = lambda l: F.interpolate(
l, size=(H, W), mode="bilinear", align_corners=False
)
# Scaled
logits_pyramid = []
for p in self.scales:
h = F.interpolate(x, scale_factor=p, mode="bilinear", align_corners=False)
logits_pyramid.append(self.base(h))
# Pixel-wise max
logits_all = [logits] + [interp(l) for l in logits_pyramid]
logits_max = torch.max(torch.stack(logits_all), dim=0)[0]
return logits_max
class DeepLabV2(nn.Sequential):
"""
DeepLab v2: Dilated ResNet + ASPP
Output stride is fixed at 8
"""
def __init__(self, n_classes=182, n_blocks=[3, 4, 23, 3], atrous_rates=[6, 12, 18, 24]):
super(DeepLabV2, self).__init__()
ch = [64 * 2 ** p for p in range(6)]
self.add_module("layer1", _Stem(ch[0]))
self.add_module("layer2", _ResLayer(n_blocks[0], ch[0], ch[2], 1, 1))
self.add_module("layer3", _ResLayer(n_blocks[1], ch[2], ch[3], 2, 1))
self.add_module("layer4", _ResLayer(n_blocks[2], ch[3], ch[4], 1, 2))
self.add_module("layer5", _ResLayer(n_blocks[3], ch[4], ch[5], 1, 4))
self.add_module("aspp", _ASPP(ch[5], n_classes, atrous_rates))
def freeze_bn(self):
for m in self.modules():
if isinstance(m, _ConvBnReLU.BATCH_NORM):
m.eval()
def preprocessing(image, device):
# Resize
scale = 640 / max(image.shape[:2])
image = cv2.resize(image, dsize=None, fx=scale, fy=scale)
raw_image = image.astype(np.uint8)
# Subtract mean values
image = image.astype(np.float32)
image -= np.array(
[
float(104.008),
float(116.669),
float(122.675),
]
)
# Convert to torch.Tensor and add "batch" axis
image = torch.from_numpy(image.transpose(2, 0, 1)).float().unsqueeze(0)
image = image.to(device)
return image, raw_image
# Model setup
def seger():
model = MSC(
base=DeepLabV2(
n_classes=182, n_blocks=[3, 4, 23, 3], atrous_rates=[6, 12, 18, 24]
),
scales=[0.5, 0.75],
)
state_dict = torch.load('models/deeplabv2_resnet101_msc-cocostuff164k-100000.pth')
model.load_state_dict(state_dict) # to skip ASPP
return model
if __name__ == '__main__':
device = 'cuda'
model = seger()
model.to(device)
model.eval()
with torch.no_grad():
im = cv2.imread('/group/30042/chongmou/ft_local/Diffusion/baselines/SPADE/datasets/coco_stuff/val_img/000000000785.jpg', cv2.IMREAD_COLOR)
im, raw_im = preprocessing(im, 'cuda')
_, _, H, W = im.shape
# Image -> Probability map
logits = model(im)
logits = F.interpolate(logits, size=(H, W), mode="bilinear", align_corners=False)
probs = F.softmax(logits, dim=1)[0]
probs = probs.cpu().data.numpy()
labelmap = np.argmax(probs, axis=0)
print(labelmap.shape, np.max(labelmap), np.min(labelmap))
cv2.imwrite('mask.png', labelmap)
|