Spaces:
Runtime error
Runtime error
import cv2 | |
import os | |
import torch | |
from pytorch_lightning import seed_everything | |
from torch import autocast | |
from basicsr.utils import tensor2img | |
from ldm.inference_base import diffusion_inference, get_adapters, get_base_argument_parser, get_sd_models | |
from ldm.modules.extra_condition import api | |
from ldm.modules.extra_condition.api import ExtraCondition, get_adapter_feature, get_cond_model | |
torch.set_grad_enabled(False) | |
def main(): | |
supported_cond = [e.name for e in ExtraCondition] | |
parser = get_base_argument_parser() | |
for cond_name in supported_cond: | |
parser.add_argument( | |
f'--{cond_name}_path', | |
type=str, | |
default=None, | |
help=f'condition image path for {cond_name}', | |
) | |
parser.add_argument( | |
f'--{cond_name}_inp_type', | |
type=str, | |
default='image', | |
help=f'the type of the input condition image, can be image or {cond_name}', | |
choices=['image', cond_name], | |
) | |
parser.add_argument( | |
f'--{cond_name}_adapter_ckpt', | |
type=str, | |
default=None, | |
help=f'path to checkpoint of the {cond_name} adapter, ' | |
f'if {cond_name}_path is not None, this should not be None too', | |
) | |
parser.add_argument( | |
f'--{cond_name}_weight', | |
type=float, | |
default=1.0, | |
help=f'the {cond_name} adapter features are multiplied by the {cond_name}_weight and then summed up together', | |
) | |
opt = parser.parse_args() | |
# process argument | |
activated_conds = [] | |
cond_paths = [] | |
adapter_ckpts = [] | |
for cond_name in supported_cond: | |
if getattr(opt, f'{cond_name}_path') is None: | |
continue | |
assert getattr(opt, f'{cond_name}_adapter_ckpt') is not None, f'you should specify the {cond_name}_adapter_ckpt' | |
activated_conds.append(cond_name) | |
cond_paths.append(getattr(opt, f'{cond_name}_path')) | |
adapter_ckpts.append(getattr(opt, f'{cond_name}_adapter_ckpt')) | |
assert len(activated_conds) != 0, 'you did not input any condition' | |
if opt.outdir is None: | |
opt.outdir = f'outputs/test-composable-adapters' | |
os.makedirs(opt.outdir, exist_ok=True) | |
if opt.resize_short_edge is None: | |
print(f"you don't specify the resize_shot_edge, so the maximum resolution is set to {opt.max_resolution}") | |
opt.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
# prepare models | |
adapters = [] | |
cond_models = [] | |
cond_inp_types = [] | |
process_cond_modules = [] | |
for cond_name in activated_conds: | |
adapters.append(get_adapters(opt, getattr(ExtraCondition, cond_name))) | |
cond_inp_type = getattr(opt, f'{cond_name}_inp_type', 'image') | |
if cond_inp_type == 'image': | |
cond_models.append(get_cond_model(opt, getattr(ExtraCondition, cond_name))) | |
else: | |
cond_models.append(None) | |
cond_inp_types.append(cond_inp_type) | |
process_cond_modules.append(getattr(api, f'get_cond_{cond_name}')) | |
sd_model, sampler = get_sd_models(opt) | |
# inference | |
with torch.inference_mode(), \ | |
sd_model.ema_scope(), \ | |
autocast('cuda'): | |
seed_everything(opt.seed) | |
conds = [] | |
for cond_idx, cond_name in enumerate(activated_conds): | |
conds.append(process_cond_modules[cond_idx]( | |
opt, cond_paths[cond_idx], cond_inp_types[cond_idx], cond_models[cond_idx], | |
)) | |
adapter_features, append_to_context = get_adapter_feature(conds, adapters) | |
for v_idx in range(opt.n_samples): | |
result = diffusion_inference(opt, sd_model, sampler, adapter_features, append_to_context) | |
base_count = len(os.listdir(opt.outdir)) | |
cv2.imwrite(os.path.join(opt.outdir, f'{base_count:05}_result.png'), tensor2img(result)) | |
if __name__ == '__main__': | |
main() | |