File size: 4,272 Bytes
30e4b7a
 
 
 
4926051
30e4b7a
 
 
 
4926051
30e4b7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4926051
30e4b7a
 
b3aba20
 
 
 
30e4b7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4926051
 
 
 
b3aba20
4926051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30e4b7a
 
 
 
 
 
 
 
4926051
30e4b7a
 
4926051
30e4b7a
 
 
 
4926051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30e4b7a
4926051
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import uvicorn
import json
import requests
from flask import Flask, request, jsonify
from flask import Response, stream_with_context


app = Flask(__name__)

rq = requests.Session()

model_names = [
        "meta-llama/Meta-Llama-3-70B-Instruct",
        "meta-llama/Meta-Llama-3-8B-Instruct",
        "mistralai/Mixtral-8x22B-Instruct-v0.1",
        "mistralai/Mixtral-8x22B-v0.1",
        "microsoft/WizardLM-2-8x22B",
        "microsoft/WizardLM-2-7B",
        "HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1",
        "google/gemma-1.1-7b-it",
        "databricks/dbrx-instruct",
        "mistralai/Mixtral-8x7B-Instruct-v0.1",
        "mistralai/Mistral-7B-Instruct-v0.2",
        "meta-llama/Llama-2-70b-chat-hf",
        "cognitivecomputations/dolphin-2.6-mixtral-8x7b",
        "codellama/CodeLlama-70b-Instruct-hf"
    ]




def DeepinFra_No_stream(Api:str, messages:list ,model:str = "meta-llama/Meta-Llama-3-70B-Instruct", max_tokens: int = 512, temperature: float = 0.7):

    url = "https://api.deepinfra.com/v1/openai/chat/completions"
    headers = {
        "accept": "text/event-stream",
        "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36",

    }




    data = json.dumps(
        {
            'model': model,
            'messages': messages,
            'temperature': temperature,
            'max_tokens': max_tokens,
            'stop': [],
            'stream': False
        }, separators=(',', ':')
    )
    
    try:
        result = rq.post(url=url, headers=headers, data=data)
        
        return result.json()['choices'][0]['message']['content']
    except:

        
        return "Response content: " + result.text

def DeepinFra_stream(Api:str, messages:list ,model: str = "meta-llama/Meta-Llama-3-70B-Instruct", max_tokens: int = 512, temperature: float = 0.7):

    url = "https://api.deepinfra.com/v1/openai/chat/completions"
    headers ={
        "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36",
        'Content-Type': 'application/json',
        'Accept': 'text/event-stream',
    }




    data = json.dumps(
        {
            'model': model,
            'messages': messages,
            'temperature': temperature,
            'max_tokens': max_tokens,
            'stream': True
        }, separators=(',', ':')
    )
    
    try:
        result = rq.post(url=url, headers=headers, data=data, stream=True)
        
        for line in result.iter_lines():
            if line:
                line = line.decode('utf-8')
                data_json = line.split('data: ')[1]
                data = json.loads(data_json)
                try:
                    content = data['choices'][0]['delta']['content']
                    yield content
                except:
                    break
    except:

        
        return "Response content: " + result.text



@app.route("/generate-text-deep", methods=["POST"])
def generate_text():
    data = request.json
    message = data.get("message")
    Api = data.get("api_key")
    model_name = data.get("model_name", "meta-llama/Meta-Llama-3-70B-Instruct")
    max_tokens = data.get("max_tokens", 512)
    temperature = data.get("temperature", 0.7)
    stream = data.get("stream", True)

    if not message or not Api:
        return jsonify({"error": "Missing required fields"}), 400

    def generate_response(stream: bool):
        if stream:
            for response in DeepinFra_stream(Api=Api, messages=message, model=model_name, max_tokens=max_tokens,
                                              temperature=temperature):
                yield json.dumps({"response": response}) + "\n"
        else:
            response = DeepinFra_No_stream(Api=Api, messages=message, model=model_name, max_tokens=max_tokens,
                                           temperature=temperature)
            yield json.dumps({"response": response}) + "\n"

    return Response(stream_with_context(generate_response(stream)), content_type='application/json'), 200



@app.route("/info", methods=["GET"])
def get_info():
    return jsonify({"model_names": model_names}), 200



if __name__=="__main__":
    app.run()