Add-Vishnu commited on
Commit
fbcb979
·
1 Parent(s): c31f0fe

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -0
app.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import pipeline
4
+ import soundfile as sf
5
+ import tempfile
6
+ import shutil
7
+ import os
8
+ import librosa
9
+ import time
10
+
11
+
12
+ def resample_to_16k(audio, orig_sr):
13
+ y_resampled = librosa.resample(y=audio, orig_sr=orig_sr, target_sr = 16000)
14
+ return y_resampled
15
+
16
+ def transcribe(audio,):
17
+ sr,y = audio
18
+ y = y.astype(np.float32)
19
+ y /= np.max(np.abs(y))
20
+ y_resampled = resample_to_16k(y, sr)
21
+
22
+
23
+ with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
24
+ temp_audio_path = temp_audio.name
25
+ sf.write(temp_audio_path, y_resampled, 16000)
26
+
27
+ command = f"""main.exe -m 'I:\\ASR\\Whisper CPP\\SubGen\\whisper_blas_bin_v1_3_0\\models\\ggml-model-whisper-small.en.bin' -osrt -f '{temp_audio_path}' -nt"""
28
+
29
+ start_time = time.time()
30
+ result = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
31
+ end_time = time.time()
32
+ print("Output",result.stdout)
33
+ print("Error",result.stderr)
34
+ transcription = result.stdout
35
+ print(transcription)
36
+
37
+ print("--------------------------")
38
+ print(f"Execution time: {end_time - start_time} seconds")
39
+ return transcription