aaditya commited on
Commit
cfbfc84
1 Parent(s): e248b98

Update src/backend/run_eval_suite.py

Browse files
Files changed (1) hide show
  1. src/backend/run_eval_suite.py +73 -19
src/backend/run_eval_suite.py CHANGED
@@ -1,9 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import json
2
  import os
3
  import logging
4
  from datetime import datetime
5
 
6
  from lm_eval import tasks, evaluator, utils
 
7
 
8
  from src.envs import RESULTS_REPO, API
9
  from src.backend.manage_requests import EvalRequest
@@ -18,32 +75,29 @@ def run_evaluation(eval_request: EvalRequest, task_names, num_fewshot, batch_siz
18
  task_names = ["medmcqa", "medqa_4options", "mmlu_anatomy", "mmlu_clinical_knowledge", "mmlu_college_biology", "mmlu_college_medicine", "mmlu_medical_genetics", "mmlu_professional_medicine", "pubmedqa"]
19
 
20
  print(f"Selected Tasks: {task_names}")
21
- results = evaluator.simple_evaluate(
22
- model="hf-causal-experimental", # "hf-causal"
23
- model_args=eval_request.get_model_args(),
24
- tasks=task_names,
25
- # num_fewshot=num_fewshot,
26
- batch_size=batch_size,
27
- device=device,
28
- no_cache=no_cache,
29
- limit=limit,
30
- write_out=True,
31
- output_base_path="logs"
32
- )
33
 
34
- results["config"]["model_dtype"] = eval_request.precision
35
- results["config"]["model_name"] = eval_request.model
36
- results["config"]["model_sha"] = eval_request.revision
 
 
 
 
 
 
 
 
 
37
 
38
- dumped = json.dumps(results, indent=2)
39
- print(dumped)
40
 
41
  output_path = os.path.join(local_dir, *eval_request.model.split("/"), f"results_{datetime.now()}.json")
42
  os.makedirs(os.path.dirname(output_path), exist_ok=True)
43
  with open(output_path, "w") as f:
44
  f.write(dumped)
45
 
46
- print(evaluator.make_table(results))
47
 
48
  API.upload_file(
49
  path_or_fileobj=output_path,
@@ -52,4 +106,4 @@ def run_evaluation(eval_request: EvalRequest, task_names, num_fewshot, batch_siz
52
  repo_type="dataset",
53
  )
54
 
55
- return results
 
1
+ # import json
2
+ # import os
3
+ # import logging
4
+ # from datetime import datetime
5
+
6
+ # from lm_eval import tasks, evaluator, utils
7
+
8
+ # from src.envs import RESULTS_REPO, API
9
+ # from src.backend.manage_requests import EvalRequest
10
+
11
+ # logging.getLogger("openai").setLevel(logging.WARNING)
12
+
13
+ # def run_evaluation(eval_request: EvalRequest, task_names, num_fewshot, batch_size, device, local_dir: str, results_repo: str, no_cache=True, limit=None):
14
+ # if limit:
15
+ # print(
16
+ # "WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
17
+ # )
18
+ # task_names = ["medmcqa", "medqa_4options", "mmlu_anatomy", "mmlu_clinical_knowledge", "mmlu_college_biology", "mmlu_college_medicine", "mmlu_medical_genetics", "mmlu_professional_medicine", "pubmedqa"]
19
+
20
+ # print(f"Selected Tasks: {task_names}")
21
+ # results = evaluator.simple_evaluate(
22
+ # model="hf-causal-experimental", # "hf-causal"
23
+ # model_args=eval_request.get_model_args(),
24
+ # tasks=task_names,
25
+ # # num_fewshot=num_fewshot,
26
+ # batch_size=batch_size,
27
+ # device=device,
28
+ # no_cache=no_cache,
29
+ # limit=limit,
30
+ # write_out=True,
31
+ # output_base_path="logs"
32
+ # )
33
+
34
+ # results["config"]["model_dtype"] = eval_request.precision
35
+ # results["config"]["model_name"] = eval_request.model
36
+ # results["config"]["model_sha"] = eval_request.revision
37
+
38
+ # dumped = json.dumps(results, indent=2)
39
+ # print(dumped)
40
+
41
+ # output_path = os.path.join(local_dir, *eval_request.model.split("/"), f"results_{datetime.now()}.json")
42
+ # os.makedirs(os.path.dirname(output_path), exist_ok=True)
43
+ # with open(output_path, "w") as f:
44
+ # f.write(dumped)
45
+
46
+ # print(evaluator.make_table(results))
47
+
48
+ # API.upload_file(
49
+ # path_or_fileobj=output_path,
50
+ # path_in_repo=f"{eval_request.model}/results_{datetime.now()}.json",
51
+ # repo_id=results_repo,
52
+ # repo_type="dataset",
53
+ # )
54
+
55
+ # return results
56
+
57
  import json
58
  import os
59
  import logging
60
  from datetime import datetime
61
 
62
  from lm_eval import tasks, evaluator, utils
63
+ import requests
64
 
65
  from src.envs import RESULTS_REPO, API
66
  from src.backend.manage_requests import EvalRequest
 
75
  task_names = ["medmcqa", "medqa_4options", "mmlu_anatomy", "mmlu_clinical_knowledge", "mmlu_college_biology", "mmlu_college_medicine", "mmlu_medical_genetics", "mmlu_professional_medicine", "pubmedqa"]
76
 
77
  print(f"Selected Tasks: {task_names}")
 
 
 
 
 
 
 
 
 
 
 
 
78
 
79
+ url = os.environ.get("URL")
80
+
81
+ data = {"args": f"pretrained={eval_request.model}"}
82
+ print("datasending", data)
83
+ response = requests.post(url, json=data)
84
+ print("response, response", response)
85
+ results_full = {'results': {}, 'config': {}}
86
+
87
+ results_full['results'] = response.json()['result']['results']
88
+ results_full["config"]["model_dtype"] = eval_request.precision
89
+ results_full["config"]["model_name"] = eval_request.model
90
+ results_full["config"]["model_sha"] = eval_request.revision
91
 
92
+ dumped = json.dumps(results_full, indent=2)
93
+ # print(dumped)
94
 
95
  output_path = os.path.join(local_dir, *eval_request.model.split("/"), f"results_{datetime.now()}.json")
96
  os.makedirs(os.path.dirname(output_path), exist_ok=True)
97
  with open(output_path, "w") as f:
98
  f.write(dumped)
99
 
100
+ # print(evaluator.make_table(results_full))
101
 
102
  API.upload_file(
103
  path_or_fileobj=output_path,
 
106
  repo_type="dataset",
107
  )
108
 
109
+ return results_full