import os from huggingface_hub import HfApi H4_TOKEN = os.environ.get("HF_SECRET", None) # REPO_ID = "pminervini/hallucinations-leaderboard" REPO_ID = "openlifescienceai/open_medical_llm_leaderboard" QUEUE_REPO = "openlifescienceai/test_requests" RESULTS_REPO = "openlifescienceai/test_results" # have not created these repos yet PRIVATE_QUEUE_REPO = "openlifescienceai/test_private-requests" PRIVATE_RESULTS_REPO = "openlifescienceai/test_private-results" IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True)) # CACHE_PATH = "/Users/chaeeunlee/Documents/VSC_workspaces/test_leaderboard" # CACHE_PATH = os.getenv("HF_HOME", ".") print(f"CACHE_PATH = {CACHE_PATH}") EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue") EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results") EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private" EVAL_RESULTS_PATH_PRIVATE = "eval-results-private" # PATH_TO_COLLECTION = "hallucinations-leaderboard/llm-leaderboard-best-models-652d6c7965a4619fb5c27a03" # ?? # Rate limit variables RATE_LIMIT_PERIOD = 7 RATE_LIMIT_QUOTA = 5 HAS_HIGHER_RATE_LIMIT = ["TheBloke"] API = HfApi(token=H4_TOKEN) # API = HfApi()