import json import os import pandas as pd from src.display.formatting import has_no_nan_values, make_clickable_model from src.display.utils import AutoEvalColumn, EvalQueueColumn from src.leaderboard.filter_models import filter_models from src.leaderboard.read_evals import get_raw_eval_results, EvalResult ''' This function, get_leaderboard_df, is designed to read and process evaluation results from a specified results path and requests path, ultimately producing a leaderboard in the form of a pandas DataFrame. The process involves several steps, including filtering, sorting, and cleaning the data based on specific criteria. Let's break down the function step by step: ''' ## TO-DO: if raw_data is [], return dummy df with correct columns so that the UI shows the right columns def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> tuple[list[EvalResult], pd.DataFrame]: print(f"results_path = {results_path}") raw_data = get_raw_eval_results(results_path, requests_path) all_data_json = [v.to_dict() for v in raw_data] # if v.is_complete()] # all_data_json.append(baseline_row) filter_models(all_data_json) print(f"all_data_json = {all_data_json}") df = pd.DataFrame.from_records(all_data_json) task_attributes = [] # Iterate over all attributes of AutoEvalColumn class for attr_name in dir(AutoEvalColumn): # Retrieve the attribute object attr = getattr(AutoEvalColumn, attr_name) # Check if the attribute has 'is_task' attribute and it is True if hasattr(attr, 'is_task') and getattr(attr, 'is_task'): task_attributes.append(attr) # Now task_attributes contains all attributes where is_task=True # print(task_attributes) task_col_names_all = [str(item.name) for item in task_attributes] # import pdb; pdb.set_trace() # Add empty columns with specified names for col_name in task_col_names_all: if col_name not in df.columns: df[col_name] = None return raw_data, df def get_evaluation_queue_df(save_path: str, cols: list) -> tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] all_evals = [] for entry in entries: if ".json" in entry: file_path = os.path.join(save_path, entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) elif ".md" not in entry: # this is a folder sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")] for sub_entry in sub_entries: file_path = os.path.join(save_path, entry, sub_entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] running_list = [e for e in all_evals if e["status"] == "RUNNING"] finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] df_pending = pd.DataFrame.from_records(pending_list, columns=cols) df_running = pd.DataFrame.from_records(running_list, columns=cols) df_finished = pd.DataFrame.from_records(finished_list, columns=cols) return df_finished[cols], df_running[cols], df_pending[cols]