Spaces:
Sleeping
Sleeping
File size: 17,260 Bytes
8dcfeb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import os
import openai
from langchain.prompts import (
ChatPromptTemplate,
MessagesPlaceholder,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate
)
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.chains import ConversationChain
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from dotenv import load_dotenv, find_dotenv
# Load environmental variables
_ = load_dotenv(find_dotenv())
class Chatbot:
"""Class definition for a single chatbot with memory, created with LangChain."""
def __init__(self, engine):
"""Select backbone large language model, as well as instantiate
the memory for creating language chain in LangChain.
Args:
--------------
engine: the backbone llm-based chat model.
"""
# Instantiate llm
if engine == 'OpenAI':
openai.api_key = os.environ['OPENAI_API_KEY']
self.llm = ChatOpenAI(
model_name="gpt-3.5-turbo",
temperature=0.7
)
else:
raise KeyError("Currently unsupported chat model type!")
# Instantiate memory
self.memory = ConversationBufferMemory(return_messages=True)
def instruct(self, role, oppo_role, language, scenario,
session_length, proficiency_level,
learning_mode, starter=False):
"""Determine the context of chatbot interaction.
Args:
-----------
role: the role played by the current bot.
oppo_role: the role played by the opponent bot.
language: the language the conversation/debate will be conducted. This is
the target language the user is trying to learn.
scenario: for conversation, scenario represents the place where the conversation
is happening; for debate, scenario represents the debating topic.
session_length: the number of exchanges between two chatbots. Two levels are possible:
"Short" or "Long".
proficiency_level: assumed user's proficiency level in target language. This
provides the guideline for the chatbots in terms of the
language complexity they will use. Three levels are possible:
"Beginner", "Intermediate", and "Advanced".
learning_mode: two modes are possible for language learning purposes:
"Conversation" --> where two bots are chatting in a specified scenario;
"Debate" --> where two bots are debating on a specified topic.
starter: flag to indicate if the current chatbot should lead the talking.
"""
# Define language settings
self.role = role
self.oppo_role = oppo_role
self.language = language
self.scenario = scenario
self.session_length = session_length
self.proficiency_level = proficiency_level
self.learning_mode = learning_mode
self.starter = starter
# Define prompt template
prompt = ChatPromptTemplate.from_messages([
SystemMessagePromptTemplate.from_template(self._specify_system_message()),
MessagesPlaceholder(variable_name="history"),
HumanMessagePromptTemplate.from_template("""{input}""")
])
# Create conversation chain
self.conversation = ConversationChain(memory=self.memory, prompt=prompt,
llm=self.llm, verbose=False)
def _specify_system_message(self):
"""Specify the behavior of the chatbot, which consists of the following aspects:
- general context: conducting conversation/debate under given scenario
- the language spoken
- purpose of the simulated conversation/debate
- language complexity requirement
- exchange length requirement
- other nuance constraints
Outputs:
--------
prompt: instructions for the chatbot.
"""
# Determine the number of exchanges between two bots
exchange_counts_dict = {
'Short': {'Conversation': 4, 'Debate': 4},
'Long': {'Conversation': 8, 'Debate': 8}
}
exchange_counts = exchange_counts_dict[self.session_length][self.learning_mode]
# Determine number of arguments in one debate round
argument_num_dict = {
'Beginner': 4,
'Intermediate': 6,
'Advanced': 8
}
# Determine language complexity
if self.proficiency_level == 'Beginner':
lang_requirement = """use as basic and simple vocabulary and
sentence structures as possible. Must avoid idioms, slang,
and complex grammatical constructs."""
elif self.proficiency_level == 'Intermediate':
lang_requirement = """use a wider range of vocabulary and a variety of sentence structures.
You can include some idioms and colloquial expressions,
but avoid highly technical language or complex literary expressions."""
elif self.proficiency_level == 'Advanced':
lang_requirement = """use sophisticated vocabulary, complex sentence structures, idioms,
colloquial expressions, and technical language where appropriate."""
else:
raise KeyError('Currently unsupported proficiency level!')
# Compile bot instructions
if self.learning_mode == 'Conversation':
prompt = f"""You are an AI that is good at role-playing.
You are simulating a real-life conversation happening in a {self.scenario} scenario.
In this scenario, you are playing as a {self.role['name']} {self.role['action']}, speaking to a
{self.oppo_role['name']} {self.oppo_role['action']}.
Your conversation should only be conducted in {self.language}. Do not translate.
This simulated {self.learning_mode} is designed for {self.language} farmers to understand best farming practices in {self.language}.
You should assume the farmers' proficiency level in
{self.language} is {self.proficiency_level}. Therefore, you should {lang_requirement}.
You should finish the conversation within {exchange_counts} exchanges with the {self.oppo_role['name']}.
Make your conversation with {self.oppo_role['name']} natural and typical in the considered scenario in
{self.language} cultural."""
elif self.learning_mode == 'Debate':
prompt = f"""You are an AI that is good at debating.
You are now engaged in a debate with the following topic: {self.scenario}.
In this debate, you are taking on the role of a {self.role['name']}.
Always remember your stances in the debate.
Your debate should only be conducted in {self.language}. Do not translate.
This simulated debate is designed for {self.language} farmers to understand best farming practices in {self.language}.
You should assume the farmers' proficiency level in {self.language}
is {self.proficiency_level}. Therefore, you should {lang_requirement}.
You will exchange opinions with another AI (who plays the {self.oppo_role['name']} role)
{exchange_counts} times.
Everytime you speak, you can only speak no more than
{argument_num_dict[self.proficiency_level]} sentences."""
else:
raise KeyError('Currently unsupported learning mode!')
# Give bot instructions
if self.starter:
# In case the current bot is the first one to speak
prompt += f"You are leading the {self.learning_mode}. \n"
else:
# In case the current bot is the second one to speak
prompt += f"Wait for the {self.oppo_role['name']}'s statement."
return prompt
class DualChatbot:
"""Class definition for dual-chatbots interaction system, created with LangChain."""
def __init__(self, engine, role_dict, language, scenario, proficiency_level,
learning_mode, session_length):
"""Args:
--------------
engine: the backbone llm-based chat model.
"OpenAI" stands for OpenAI chat model;
Other chat models are also possible in LangChain,
see https://python.langchain.com/en/latest/modules/models/chat/integrations.html
role_dict: dictionary to hold information regarding roles.
For conversation mode, an example role_dict is:
role_dict = {
'role1': {'name': 'Customer', 'action': 'ordering food'},
'role2': {'name': 'Waitstaff', 'action': 'taking the order'}
}
For debate mode, an example role_dict is:
role_dict = {
'role1': {'name': 'Proponent'},
'role2': {'name': 'Opponent'}
}
language: the language the conversation/debate will be conducted. This is
the target language the user is trying to learn.
scenario: for conversation, scenario represents the place where the conversation
is happening; for debate, scenario represents the debating topic.
proficiency_level: assumed user's proficiency level in target language. This
provides the guideline for the chatbots in terms of the
language complexity they will use. Three levels are possible:
"Beginner", "Intermediate", and "Advanced".
session_length: the number of exchanges between two chatbots. Two levels are possible:
"Short" or "Long".
learning_mode: two modes are possible for language learning purposes:
"Conversation" --> where two bots are chatting in a specified scenario;
"Debate" --> where two bots are debating on a specified topic.
"""
# Instantiate two chatbots
self.engine = engine
self.proficiency_level = proficiency_level
self.language = language
self.chatbots = role_dict
for k in role_dict.keys():
self.chatbots[k].update({'chatbot': Chatbot(engine)})
# Assigning roles for two chatbots
self.chatbots['role1']['chatbot'].instruct(role=self.chatbots['role1'],
oppo_role=self.chatbots['role2'],
language=language, scenario=scenario,
session_length=session_length,
proficiency_level=proficiency_level,
learning_mode=learning_mode, starter=True)
self.chatbots['role2']['chatbot'].instruct(role=self.chatbots['role2'],
oppo_role=self.chatbots['role1'],
language=language, scenario=scenario,
session_length=session_length,
proficiency_level=proficiency_level,
learning_mode=learning_mode, starter=False)
# Add session length
self.session_length = session_length
# Prepare conversation
self._reset_conversation_history()
def step(self):
"""Make one exchange round between two chatbots.
Outputs:
--------
output1: response of the first chatbot
output2: response of the second chatbot
translate1: translate of the first response
translate2: translate of the second response
"""
# Chatbot1 speaks
output1 = self.chatbots['role1']['chatbot'].conversation.predict(input=self.input1)
self.conversation_history.append({"bot": self.chatbots['role1']['name'], "text": output1})
# Pass output of chatbot1 as input to chatbot2
self.input2 = output1
# Chatbot2 speaks
output2 = self.chatbots['role2']['chatbot'].conversation.predict(input=self.input2)
self.conversation_history.append({"bot": self.chatbots['role2']['name'], "text": output2})
# Pass output of chatbot2 as input to chatbot1
self.input1 = output2
# Translate responses
translate1 = self.translate(output1)
translate2 = self.translate(output2)
return output1, output2, translate1, translate2
def translate(self, message):
"""Translate the generated script into target language.
Args:
--------
message: input message that needs to be translated.
Outputs:
--------
translation: translated message.
"""
if self.language == 'English':
# No translation performed
translation = 'Translation: ' + message
else:
# Instantiate translator
if self.engine == 'OpenAI':
# Reminder: need to set up openAI API key
# (e.g., via environment variable OPENAI_API_KEY)
self.translator = ChatOpenAI(
model_name="gpt-3.5-turbo",
temperature=0.7
)
else:
raise KeyError("Currently unsupported translation model type!")
# Specify instruction
instruction = """Translate the following sentence from {src_lang}
(source language) to {trg_lang} (target language).
Here is the sentence in source language: \n
{src_input}."""
prompt = PromptTemplate(
input_variables=["src_lang", "trg_lang", "src_input"],
template=instruction,
)
# Create a language chain
translator_chain = LLMChain(llm=self.translator, prompt=prompt)
translation = translator_chain.predict(src_lang=self.language,
trg_lang="English",
src_input=message)
return translation
def summary(self, script):
"""Distill key language learning points from the generated scripts.
Args:
--------
script: the generated conversation between two bots.
Outputs:
--------
summary: summary of the key learning points.
"""
# Instantiate summary bot
if self.engine == 'OpenAI':
# Reminder: need to set up openAI API key
# (e.g., via environment variable OPENAI_API_KEY)
self.summary_bot = ChatOpenAI(
model_name="gpt-3.5-turbo",
temperature=0.7
)
else:
raise KeyError("Currently unsupported summary model type!")
# Specify instruction
instruction = """The following text is a simulated conversation in
{src_lang}. The goal of this text is to aid {src_lang} learners to learn
real-life usage of {src_lang}. Therefore, your task is to summarize the key
learning points based on the given text. Specifically, you should summarize
the key vocabulary, grammar points, and function phrases that could be important
for students learning {src_lang}. Your summary should be conducted in English, but
use examples from the text in the original language where appropriate.
Remember your target students have a proficiency level of
{proficiency} in {src_lang}. You summarization must match with their
proficiency level.
The conversation is: \n
{script}."""
prompt = PromptTemplate(
input_variables=["src_lang", "proficiency", "script"],
template=instruction,
)
# Create a language chain
summary_chain = LLMChain(llm=self.summary_bot, prompt=prompt)
summary = summary_chain.predict(src_lang=self.language,
proficiency=self.proficiency_level,
script=script)
return summary
def _reset_conversation_history(self):
"""Reset the conversation history.
"""
# Placeholder for conversation history
self.conversation_history = []
# Inputs for two chatbots
self.input1 = "Start the conversation."
self.input2 = "" |