File size: 557 Bytes
ebf855d
 
 
 
 
 
 
 
 
5f3c8d1
ebf855d
92a8827
ebf855d
 
 
bb7f25f
ebf855d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
## https://medium.com/@sa.pieri.98/build-your-first-hugging-face-space-with-gradio-a-beginners-guide-14bc42d66887

import gradio as gr
from transformers import pipeline

pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")

def predict(image):
    predictions = pipeline(image)
    return {p["label"]: p["score"] for p in predictions}

gr.Interface(
    predict,
    inputs = gr.Image(label="Upload hot dog candidate", type = "filepath"),
    outputs = gr.Label(num_top_classes=2),
    title="hot Dog? or Not ?",
).launch()