Spaces:
Sleeping
Sleeping
File size: 980 Bytes
ebf855d 0c8f4ea b9b1c0f 9d12323 690cced 9d12323 690cced 0c8f4ea ebf855d 5f3c8d1 ebf855d 92a8827 ebf855d c1f4ee4 0376c02 df57649 e1cb7b2 ebf855d 9d12323 c1f4ee4 9d12323 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
## https://medium.com/@sa.pieri.98/build-your-first-hugging-face-space-with-gradio-a-beginners-guide-14bc42d66887
import gradio as gr
from transformers import pipeline
#pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
#pipeline = pipeline(task="image-classification", model="hg2001/autotrain-animals-vs-humans2-37846100283")
pipeline = pipeline("image-classification", model="lazyturtl/roomclassifier")
#pipeline = pipeline("image-classification", model="dima806/facial_emotions_image_detection")
def predict(image):
predictions = pipeline(image)
return {p["label"]: p["score"] for p in predictions}
gr.Interface(
predict,
inputs = gr.Image(label="Upload Any room photo", type = "filepath"),
outputs = gr.Label(num_top_classes=5),
title="Show your face ?",
).launch(share="True")
#inputs = gr.Image(sources=["webcam"], streaming=True),
#sources=["upload", "webcam", "clipboard"]
# inputs = gr.Image(),
|