## https://medium.com/@sa.pieri.98/build-your-first-hugging-face-space-with-gradio-a-beginners-guide-14bc42d66887 import gradio as gr from transformers import pipeline #pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") #pipeline = pipeline(task="image-classification", model="hg2001/autotrain-animals-vs-humans2-37846100283") pipeline = pipeline("image-classification", model="lazyturtl/roomclassifier") #pipeline = pipeline("image-classification", model="dima806/facial_emotions_image_detection") def predict(image): predictions = pipeline(image) return {p["label"]: p["score"] for p in predictions} gr.Interface( predict, inputs = gr.Image(label="Upload Any room photo", type = "filepath"), outputs = gr.Label(num_top_classes=5), title="Show your face ?", ).launch(share="True") #inputs = gr.Image(sources=["webcam"], streaming=True), #sources=["upload", "webcam", "clipboard"] # inputs = gr.Image(),