# Prerequisite libraries from dotenv import load_dotenv from langchain.embeddings import HuggingFaceEmbeddings from langchain.llms import HuggingFaceHub from langchain.document_loaders import YoutubeLoader from langchain.chains import LLMChain from langchain.prompts import (SystemMessagePromptTemplate,HumanMessagePromptTemplate, ChatPromptTemplate) from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import FAISS import textwrap from langchain_google_genai import GoogleGenerativeAI load_dotenv() def app(url,querry): loader = YoutubeLoader.from_youtube_url(youtube_url=url) transcript = loader.load() embeddings = HuggingFaceEmbeddings() rcts = RecursiveCharacterTextSplitter(chunk_size=400,chunk_overlap=20) docs = rcts.split_documents(transcript) db = FAISS.from_documents(docs,embeddings) docs = db.similarity_search(querry, k=3) docs_page_content = " ".join([d.page_content for d in docs]) template = """ hey you are a very helpful Ai assistant who is able to answer question about youtube videos based on the video's transcript: {source} Only use the factual imformation gathered from the transcript to answer the question also answer it in a very detailed manner more than 30 words. If you feel that you dont have enough imformation to answer the question say "I dont have enough imformation in order to answer this question". """ llm = GoogleGenerativeAI(model="models/text-bison-001") system_msg_template = SystemMessagePromptTemplate.from_template(template) human_template = "Answer the following question: {question}" human_msg_template = HumanMessagePromptTemplate.from_template(human_template) chat_prompt = ChatPromptTemplate.from_messages( [system_msg_template,human_msg_template], ) chain = LLMChain(llm = llm,prompt = chat_prompt) responce = chain.run(question = querry,source = docs_page_content) return responce, docs