Aditya9790 commited on
Commit
032bbfd
·
1 Parent(s): 8524d61

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +252 -0
app.py CHANGED
@@ -34,4 +34,256 @@ model_names = [
34
 
35
  models = {model_name: load_model(model_name) for model_name in model_names}
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
 
34
 
35
  models = {model_name: load_model(model_name) for model_name in model_names}
36
 
37
+ ##################################
38
+ """Function to Draw Bounding boxes"""
39
+ def draw_boxes(img, bbox, identities=None, categories=None, confidences = None, names=None, colors = None):
40
+ for i, box in enumerate(bbox):
41
+ x1, y1, x2, y2 = [int(i) for i in box]
42
+ tl = opt.thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
43
+
44
+ cat = int(categories[i]) if categories is not None else 0
45
+ id = int(identities[i]) if identities is not None else 0
46
+ # conf = confidences[i] if confidences is not None else 0
47
+
48
+ color = colors[cat]
49
+
50
+ if not opt.nobbox:
51
+ cv2.rectangle(img, (x1, y1), (x2, y2), color, tl)
52
+
53
+ if not opt.nolabel:
54
+ label = str(id) + ":"+ names[cat] if identities is not None else f'{names[cat]} {confidences[i]:.2f}'
55
+ tf = max(tl - 1, 1) # font thickness
56
+ t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
57
+ c2 = x1 + t_size[0], y1 - t_size[1] - 3
58
+ cv2.rectangle(img, (x1, y1), c2, color, -1, cv2.LINE_AA) # filled
59
+ cv2.putText(img, label, (x1, y1 - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
60
+
61
+
62
+ return img
63
+ ##################################
64
+
65
+
66
+ def detect(img, model):
67
+ parser = argparse.ArgumentParser()
68
+ parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
69
+ parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
70
+ parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
71
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
72
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
73
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
74
+ parser.add_argument('--view-img', action='store_true', help='display results')
75
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
76
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
77
+ parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
78
+ parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
79
+ parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
80
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
81
+ parser.add_argument('--update', action='store_true', help='update all models')
82
+ parser.add_argument('--project', default='runs/detect', help='save results to project/name')
83
+ parser.add_argument('--name', default='exp', help='save results to project/name')
84
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
85
+ parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
86
+
87
+ parser.add_argument('--track', action='store_true', help='run tracking')
88
+ parser.add_argument('--show-track', action='store_true', help='show tracked path')
89
+ parser.add_argument('--show-fps', action='store_true', help='show fps')
90
+ parser.add_argument('--thickness', type=int, default=2, help='bounding box and font size thickness')
91
+ parser.add_argument('--seed', type=int, default=1, help='random seed to control bbox colors')
92
+ parser.add_argument('--nobbox', action='store_true', help='don`t show bounding box')
93
+ parser.add_argument('--nolabel', action='store_true', help='don`t show label')
94
+ parser.add_argument('--unique-track-color', action='store_true', help='show each track in unique color')
95
+
96
+ np.random.seed(opt.seed)
97
+
98
+ sort_tracker = Sort(max_age=5,
99
+ min_hits=2,
100
+ iou_threshold=0.2)
101
+
102
+ source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
103
+ save_img = not opt.nosave and not source.endswith('.txt') # save inference images
104
+ webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
105
+ ('rtsp://', 'rtmp://', 'http://', 'https://'))
106
+ save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
107
+ if not opt.nosave:
108
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
109
+
110
+ # Initialize
111
+ set_logging()
112
+ device = select_device(opt.device)
113
+ half = device.type != 'cpu' # half precision only supported on CUDA
114
+
115
+ # Load model
116
+ model = attempt_load(weights, map_location=device) # load FP32 model
117
+ stride = int(model.stride.max()) # model stride
118
+ imgsz = check_img_size(imgsz, s=stride) # check img_size
119
+
120
+ if trace:
121
+ model = TracedModel(model, device, opt.img_size)
122
+
123
+ if half:
124
+ model.half() # to FP16
125
+
126
+ # Second-stage classifier
127
+ classify = False
128
+ if classify:
129
+ modelc = load_classifier(name='resnet101', n=2) # initialize
130
+ modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
131
+
132
+ # Set Dataloader
133
+ vid_path, vid_writer = None, None
134
+ if webcam:
135
+ view_img = check_imshow()
136
+ cudnn.benchmark = True # set True to speed up constant image size inference
137
+ dataset = LoadStreams(source, img_size=imgsz, stride=stride)
138
+ else:
139
+ dataset = LoadImages(source, img_size=imgsz, stride=stride)
140
+
141
+ # Get names and colors
142
+ names = model.module.names if hasattr(model, 'module') else model.names
143
+ colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
144
+
145
+ # Run inference
146
+ if device.type != 'cpu':
147
+ model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
148
+ old_img_w = old_img_h = imgsz
149
+ old_img_b = 1
150
+
151
+ t0 = time.time()
152
+ ###################################
153
+ startTime = 0
154
+ ###################################
155
+ for path, img, im0s, vid_cap in dataset:
156
+ img = torch.from_numpy(img).to(device)
157
+ img = img.half() if half else img.float() # uint8 to fp16/32
158
+ img /= 255.0 # 0 - 255 to 0.0 - 1.0
159
+ if img.ndimension() == 3:
160
+ img = img.unsqueeze(0)
161
+
162
+ # Warmup
163
+ if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
164
+ old_img_b = img.shape[0]
165
+ old_img_h = img.shape[2]
166
+ old_img_w = img.shape[3]
167
+ for i in range(3):
168
+ model(img, augment=opt.augment)[0]
169
+
170
+ # Inference
171
+ t1 = time_synchronized()
172
+ pred = model(img, augment=opt.augment)[0]
173
+ t2 = time_synchronized()
174
+
175
+ # Apply NMS
176
+ pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
177
+ t3 = time_synchronized()
178
+
179
+ # Apply Classifier
180
+ if classify:
181
+ pred = apply_classifier(pred, modelc, img, im0s)
182
+
183
+ # Process detections
184
+ for i, det in enumerate(pred): # detections per image
185
+ if webcam: # batch_size >= 1
186
+ p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
187
+ else:
188
+ p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
189
+
190
+ p = Path(p) # to Path
191
+ save_path = str(save_dir / p.name) # img.jpg
192
+ txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
193
+ gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
194
+ if len(det):
195
+ # Rescale boxes from img_size to im0 size
196
+ det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
197
+
198
+ # Print results
199
+ for c in det[:, -1].unique():
200
+ n = (det[:, -1] == c).sum() # detections per class
201
+ s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
202
+
203
+ dets_to_sort = np.empty((0,6))
204
+ # NOTE: We send in detected object class too
205
+ for x1,y1,x2,y2,conf,detclass in det.cpu().detach().numpy():
206
+ dets_to_sort = np.vstack((dets_to_sort,
207
+ np.array([x1, y1, x2, y2, conf, detclass])))
208
+
209
+
210
+ if opt.track:
211
+
212
+ tracked_dets = sort_tracker.update(dets_to_sort, opt.unique_track_color)
213
+ tracks =sort_tracker.getTrackers()
214
+
215
+ # draw boxes for visualization
216
+ if len(tracked_dets)>0:
217
+ bbox_xyxy = tracked_dets[:,:4]
218
+ identities = tracked_dets[:, 8]
219
+ categories = tracked_dets[:, 4]
220
+ confidences = None
221
+
222
+ if opt.show_track:
223
+ #loop over tracks
224
+ for t, track in enumerate(tracks):
225
+
226
+ track_color = colors[int(track.detclass)] if not opt.unique_track_color else sort_tracker.color_list[t]
227
+
228
+ [cv2.line(im0, (int(track.centroidarr[i][0]),
229
+ int(track.centroidarr[i][1])),
230
+ (int(track.centroidarr[i+1][0]),
231
+ int(track.centroidarr[i+1][1])),
232
+ track_color, thickness=opt.thickness)
233
+ for i,_ in enumerate(track.centroidarr)
234
+ if i < len(track.centroidarr)-1 ]
235
+ else:
236
+ bbox_xyxy = dets_to_sort[:,:4]
237
+ identities = None
238
+ categories = dets_to_sort[:, 5]
239
+ confidences = dets_to_sort[:, 4]
240
+
241
+ im0 = draw_boxes(im0, bbox_xyxy, identities, categories, confidences, names, colors)
242
+
243
+
244
+
245
+
246
+
247
+ # Print time (inference + NMS)
248
+ print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')
249
+
250
+ # Stream results
251
+ ######################################################
252
+ if dataset.mode != 'image' and opt.show_fps:
253
+ currentTime = time.time()
254
+
255
+ fps = 1/(currentTime - startTime)
256
+ startTime = currentTime
257
+ cv2.putText(im0, "FPS: " + str(int(fps)), (20, 70), cv2.FONT_HERSHEY_PLAIN, 2, (0,255,0),2)
258
+
259
+ #######################################################
260
+ if view_img:
261
+ cv2.imshow(str(p), im0)
262
+ cv2.waitKey(1) # 1 millisecond
263
+
264
+ # Save results (image with detections)
265
+ if save_img:
266
+ if dataset.mode == 'image':
267
+ cv2.imwrite(save_path, im0)
268
+ print(f" The image with the result is saved in: {save_path}")
269
+ else: # 'video' or 'stream'
270
+ if vid_path != save_path: # new video
271
+ vid_path = save_path
272
+ if isinstance(vid_writer, cv2.VideoWriter):
273
+ vid_writer.release() # release previous video writer
274
+ if vid_cap: # video
275
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
276
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
277
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
278
+ else: # stream
279
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
280
+ save_path += '.mp4'
281
+ vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
282
+ vid_writer.write(im0)
283
+
284
+ if save_txt or save_img:
285
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
286
+ #print(f"Results saved to {save_dir}{s}")
287
+
288
+ print(f'Done. ({time.time() - t0:.3f}s)')
289