Spaces:
Runtime error
Runtime error
Commit
·
032bbfd
1
Parent(s):
8524d61
Update app.py
Browse files
app.py
CHANGED
@@ -34,4 +34,256 @@ model_names = [
|
|
34 |
|
35 |
models = {model_name: load_model(model_name) for model_name in model_names}
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
|
|
34 |
|
35 |
models = {model_name: load_model(model_name) for model_name in model_names}
|
36 |
|
37 |
+
##################################
|
38 |
+
"""Function to Draw Bounding boxes"""
|
39 |
+
def draw_boxes(img, bbox, identities=None, categories=None, confidences = None, names=None, colors = None):
|
40 |
+
for i, box in enumerate(bbox):
|
41 |
+
x1, y1, x2, y2 = [int(i) for i in box]
|
42 |
+
tl = opt.thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
|
43 |
+
|
44 |
+
cat = int(categories[i]) if categories is not None else 0
|
45 |
+
id = int(identities[i]) if identities is not None else 0
|
46 |
+
# conf = confidences[i] if confidences is not None else 0
|
47 |
+
|
48 |
+
color = colors[cat]
|
49 |
+
|
50 |
+
if not opt.nobbox:
|
51 |
+
cv2.rectangle(img, (x1, y1), (x2, y2), color, tl)
|
52 |
+
|
53 |
+
if not opt.nolabel:
|
54 |
+
label = str(id) + ":"+ names[cat] if identities is not None else f'{names[cat]} {confidences[i]:.2f}'
|
55 |
+
tf = max(tl - 1, 1) # font thickness
|
56 |
+
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
57 |
+
c2 = x1 + t_size[0], y1 - t_size[1] - 3
|
58 |
+
cv2.rectangle(img, (x1, y1), c2, color, -1, cv2.LINE_AA) # filled
|
59 |
+
cv2.putText(img, label, (x1, y1 - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
|
60 |
+
|
61 |
+
|
62 |
+
return img
|
63 |
+
##################################
|
64 |
+
|
65 |
+
|
66 |
+
def detect(img, model):
|
67 |
+
parser = argparse.ArgumentParser()
|
68 |
+
parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
|
69 |
+
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
|
70 |
+
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
71 |
+
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
|
72 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
|
73 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
74 |
+
parser.add_argument('--view-img', action='store_true', help='display results')
|
75 |
+
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
76 |
+
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
77 |
+
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
|
78 |
+
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
|
79 |
+
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
80 |
+
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
81 |
+
parser.add_argument('--update', action='store_true', help='update all models')
|
82 |
+
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
|
83 |
+
parser.add_argument('--name', default='exp', help='save results to project/name')
|
84 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
85 |
+
parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
|
86 |
+
|
87 |
+
parser.add_argument('--track', action='store_true', help='run tracking')
|
88 |
+
parser.add_argument('--show-track', action='store_true', help='show tracked path')
|
89 |
+
parser.add_argument('--show-fps', action='store_true', help='show fps')
|
90 |
+
parser.add_argument('--thickness', type=int, default=2, help='bounding box and font size thickness')
|
91 |
+
parser.add_argument('--seed', type=int, default=1, help='random seed to control bbox colors')
|
92 |
+
parser.add_argument('--nobbox', action='store_true', help='don`t show bounding box')
|
93 |
+
parser.add_argument('--nolabel', action='store_true', help='don`t show label')
|
94 |
+
parser.add_argument('--unique-track-color', action='store_true', help='show each track in unique color')
|
95 |
+
|
96 |
+
np.random.seed(opt.seed)
|
97 |
+
|
98 |
+
sort_tracker = Sort(max_age=5,
|
99 |
+
min_hits=2,
|
100 |
+
iou_threshold=0.2)
|
101 |
+
|
102 |
+
source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
|
103 |
+
save_img = not opt.nosave and not source.endswith('.txt') # save inference images
|
104 |
+
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
|
105 |
+
('rtsp://', 'rtmp://', 'http://', 'https://'))
|
106 |
+
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
|
107 |
+
if not opt.nosave:
|
108 |
+
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
109 |
+
|
110 |
+
# Initialize
|
111 |
+
set_logging()
|
112 |
+
device = select_device(opt.device)
|
113 |
+
half = device.type != 'cpu' # half precision only supported on CUDA
|
114 |
+
|
115 |
+
# Load model
|
116 |
+
model = attempt_load(weights, map_location=device) # load FP32 model
|
117 |
+
stride = int(model.stride.max()) # model stride
|
118 |
+
imgsz = check_img_size(imgsz, s=stride) # check img_size
|
119 |
+
|
120 |
+
if trace:
|
121 |
+
model = TracedModel(model, device, opt.img_size)
|
122 |
+
|
123 |
+
if half:
|
124 |
+
model.half() # to FP16
|
125 |
+
|
126 |
+
# Second-stage classifier
|
127 |
+
classify = False
|
128 |
+
if classify:
|
129 |
+
modelc = load_classifier(name='resnet101', n=2) # initialize
|
130 |
+
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
|
131 |
+
|
132 |
+
# Set Dataloader
|
133 |
+
vid_path, vid_writer = None, None
|
134 |
+
if webcam:
|
135 |
+
view_img = check_imshow()
|
136 |
+
cudnn.benchmark = True # set True to speed up constant image size inference
|
137 |
+
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
|
138 |
+
else:
|
139 |
+
dataset = LoadImages(source, img_size=imgsz, stride=stride)
|
140 |
+
|
141 |
+
# Get names and colors
|
142 |
+
names = model.module.names if hasattr(model, 'module') else model.names
|
143 |
+
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
|
144 |
+
|
145 |
+
# Run inference
|
146 |
+
if device.type != 'cpu':
|
147 |
+
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
|
148 |
+
old_img_w = old_img_h = imgsz
|
149 |
+
old_img_b = 1
|
150 |
+
|
151 |
+
t0 = time.time()
|
152 |
+
###################################
|
153 |
+
startTime = 0
|
154 |
+
###################################
|
155 |
+
for path, img, im0s, vid_cap in dataset:
|
156 |
+
img = torch.from_numpy(img).to(device)
|
157 |
+
img = img.half() if half else img.float() # uint8 to fp16/32
|
158 |
+
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
159 |
+
if img.ndimension() == 3:
|
160 |
+
img = img.unsqueeze(0)
|
161 |
+
|
162 |
+
# Warmup
|
163 |
+
if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
|
164 |
+
old_img_b = img.shape[0]
|
165 |
+
old_img_h = img.shape[2]
|
166 |
+
old_img_w = img.shape[3]
|
167 |
+
for i in range(3):
|
168 |
+
model(img, augment=opt.augment)[0]
|
169 |
+
|
170 |
+
# Inference
|
171 |
+
t1 = time_synchronized()
|
172 |
+
pred = model(img, augment=opt.augment)[0]
|
173 |
+
t2 = time_synchronized()
|
174 |
+
|
175 |
+
# Apply NMS
|
176 |
+
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
|
177 |
+
t3 = time_synchronized()
|
178 |
+
|
179 |
+
# Apply Classifier
|
180 |
+
if classify:
|
181 |
+
pred = apply_classifier(pred, modelc, img, im0s)
|
182 |
+
|
183 |
+
# Process detections
|
184 |
+
for i, det in enumerate(pred): # detections per image
|
185 |
+
if webcam: # batch_size >= 1
|
186 |
+
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
|
187 |
+
else:
|
188 |
+
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
|
189 |
+
|
190 |
+
p = Path(p) # to Path
|
191 |
+
save_path = str(save_dir / p.name) # img.jpg
|
192 |
+
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
|
193 |
+
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
194 |
+
if len(det):
|
195 |
+
# Rescale boxes from img_size to im0 size
|
196 |
+
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
|
197 |
+
|
198 |
+
# Print results
|
199 |
+
for c in det[:, -1].unique():
|
200 |
+
n = (det[:, -1] == c).sum() # detections per class
|
201 |
+
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
202 |
+
|
203 |
+
dets_to_sort = np.empty((0,6))
|
204 |
+
# NOTE: We send in detected object class too
|
205 |
+
for x1,y1,x2,y2,conf,detclass in det.cpu().detach().numpy():
|
206 |
+
dets_to_sort = np.vstack((dets_to_sort,
|
207 |
+
np.array([x1, y1, x2, y2, conf, detclass])))
|
208 |
+
|
209 |
+
|
210 |
+
if opt.track:
|
211 |
+
|
212 |
+
tracked_dets = sort_tracker.update(dets_to_sort, opt.unique_track_color)
|
213 |
+
tracks =sort_tracker.getTrackers()
|
214 |
+
|
215 |
+
# draw boxes for visualization
|
216 |
+
if len(tracked_dets)>0:
|
217 |
+
bbox_xyxy = tracked_dets[:,:4]
|
218 |
+
identities = tracked_dets[:, 8]
|
219 |
+
categories = tracked_dets[:, 4]
|
220 |
+
confidences = None
|
221 |
+
|
222 |
+
if opt.show_track:
|
223 |
+
#loop over tracks
|
224 |
+
for t, track in enumerate(tracks):
|
225 |
+
|
226 |
+
track_color = colors[int(track.detclass)] if not opt.unique_track_color else sort_tracker.color_list[t]
|
227 |
+
|
228 |
+
[cv2.line(im0, (int(track.centroidarr[i][0]),
|
229 |
+
int(track.centroidarr[i][1])),
|
230 |
+
(int(track.centroidarr[i+1][0]),
|
231 |
+
int(track.centroidarr[i+1][1])),
|
232 |
+
track_color, thickness=opt.thickness)
|
233 |
+
for i,_ in enumerate(track.centroidarr)
|
234 |
+
if i < len(track.centroidarr)-1 ]
|
235 |
+
else:
|
236 |
+
bbox_xyxy = dets_to_sort[:,:4]
|
237 |
+
identities = None
|
238 |
+
categories = dets_to_sort[:, 5]
|
239 |
+
confidences = dets_to_sort[:, 4]
|
240 |
+
|
241 |
+
im0 = draw_boxes(im0, bbox_xyxy, identities, categories, confidences, names, colors)
|
242 |
+
|
243 |
+
|
244 |
+
|
245 |
+
|
246 |
+
|
247 |
+
# Print time (inference + NMS)
|
248 |
+
print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')
|
249 |
+
|
250 |
+
# Stream results
|
251 |
+
######################################################
|
252 |
+
if dataset.mode != 'image' and opt.show_fps:
|
253 |
+
currentTime = time.time()
|
254 |
+
|
255 |
+
fps = 1/(currentTime - startTime)
|
256 |
+
startTime = currentTime
|
257 |
+
cv2.putText(im0, "FPS: " + str(int(fps)), (20, 70), cv2.FONT_HERSHEY_PLAIN, 2, (0,255,0),2)
|
258 |
+
|
259 |
+
#######################################################
|
260 |
+
if view_img:
|
261 |
+
cv2.imshow(str(p), im0)
|
262 |
+
cv2.waitKey(1) # 1 millisecond
|
263 |
+
|
264 |
+
# Save results (image with detections)
|
265 |
+
if save_img:
|
266 |
+
if dataset.mode == 'image':
|
267 |
+
cv2.imwrite(save_path, im0)
|
268 |
+
print(f" The image with the result is saved in: {save_path}")
|
269 |
+
else: # 'video' or 'stream'
|
270 |
+
if vid_path != save_path: # new video
|
271 |
+
vid_path = save_path
|
272 |
+
if isinstance(vid_writer, cv2.VideoWriter):
|
273 |
+
vid_writer.release() # release previous video writer
|
274 |
+
if vid_cap: # video
|
275 |
+
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
276 |
+
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
277 |
+
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
278 |
+
else: # stream
|
279 |
+
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
280 |
+
save_path += '.mp4'
|
281 |
+
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
282 |
+
vid_writer.write(im0)
|
283 |
+
|
284 |
+
if save_txt or save_img:
|
285 |
+
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
286 |
+
#print(f"Results saved to {save_dir}{s}")
|
287 |
+
|
288 |
+
print(f'Done. ({time.time() - t0:.3f}s)')
|
289 |
|