import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer # Load the pretrained model and tokenizer separately model = AutoModelForCausalLM.from_pretrained("Adityyaa/Mistral-7b_finetuned_mental_health") tokenizer = AutoTokenizer.from_pretrained("Adityyaa/Mistral-7b_finetuned_mental_health") # Define the Streamlit app def main(): st.title("Mental Health Chatbot") st.write("Enter your message below and the chatbot will respond.") user_input = st.text_input("You:", "") if st.button("Send"): if user_input: # Generate response from the chatbot input_ids = tokenizer.encode(user_input, return_tensors="pt") response = model.generate(input_ids, max_length=50, num_return_sequences=1) response_text = tokenizer.decode(response[0], skip_special_tokens=True) st.text_area("Chatbot:", response_text) else: st.warning("Please enter a message.") if __name__ == "__main__": main()