Spaces:
Sleeping
Sleeping
File size: 12,416 Bytes
a3290d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
"""
@author: louisblankemeier
"""
import math
import os
import shutil
import cv2
import nibabel as nib
import numpy as np
import scipy.ndimage as ndi
from scipy.ndimage import zoom
from skimage.morphology import ball, binary_erosion
from comp2comp.hip.hip_visualization import method_visualizer
def compute_rois(medical_volume, segmentation, model, output_dir, save=False):
left_femur_mask = segmentation.get_fdata() == model.categories["femur_left"]
left_femur_mask = left_femur_mask.astype(np.uint8)
right_femur_mask = segmentation.get_fdata() == model.categories["femur_right"]
right_femur_mask = right_femur_mask.astype(np.uint8)
left_head_roi, left_head_centroid, left_head_hu = get_femural_head_roi(
left_femur_mask, medical_volume, output_dir, "left_head"
)
right_head_roi, right_head_centroid, right_head_hu = get_femural_head_roi(
right_femur_mask, medical_volume, output_dir, "right_head"
)
(
left_intertrochanter_roi,
left_intertrochanter_centroid,
left_intertrochanter_hu,
) = get_femural_head_roi(
left_femur_mask, medical_volume, output_dir, "left_intertrochanter"
)
(
right_intertrochanter_roi,
right_intertrochanter_centroid,
right_intertrochanter_hu,
) = get_femural_head_roi(
right_femur_mask, medical_volume, output_dir, "right_intertrochanter"
)
(
left_neck_roi,
left_neck_centroid,
left_neck_hu,
) = get_femural_neck_roi(
left_femur_mask,
medical_volume,
left_intertrochanter_roi,
left_intertrochanter_centroid,
left_head_roi,
left_head_centroid,
output_dir,
)
(
right_neck_roi,
right_neck_centroid,
right_neck_hu,
) = get_femural_neck_roi(
right_femur_mask,
medical_volume,
right_intertrochanter_roi,
right_intertrochanter_centroid,
right_head_roi,
right_head_centroid,
output_dir,
)
combined_roi = (
left_head_roi
+ (right_head_roi) # * 2)
+ (left_intertrochanter_roi) # * 3)
+ (right_intertrochanter_roi) # * 4)
+ (left_neck_roi) # * 5)
+ (right_neck_roi) # * 6)
)
if save:
# make roi directory if it doesn't exist
parent_output_dir = os.path.dirname(output_dir)
roi_output_dir = os.path.join(parent_output_dir, "rois")
if not os.path.exists(roi_output_dir):
os.makedirs(roi_output_dir)
# Convert left ROI to NIfTI
left_roi_nifti = nib.Nifti1Image(combined_roi, medical_volume.affine)
left_roi_path = os.path.join(roi_output_dir, "roi.nii.gz")
nib.save(left_roi_nifti, left_roi_path)
shutil.copy(
os.path.join(
os.path.dirname(os.path.abspath(__file__)),
"tunnelvision.ipynb",
),
parent_output_dir,
)
return {
"left_head": {
"roi": left_head_roi,
"centroid": left_head_centroid,
"hu": left_head_hu,
},
"right_head": {
"roi": right_head_roi,
"centroid": right_head_centroid,
"hu": right_head_hu,
},
"left_intertrochanter": {
"roi": left_intertrochanter_roi,
"centroid": left_intertrochanter_centroid,
"hu": left_intertrochanter_hu,
},
"right_intertrochanter": {
"roi": right_intertrochanter_roi,
"centroid": right_intertrochanter_centroid,
"hu": right_intertrochanter_hu,
},
"left_neck": {
"roi": left_neck_roi,
"centroid": left_neck_centroid,
"hu": left_neck_hu,
},
"right_neck": {
"roi": right_neck_roi,
"centroid": right_neck_centroid,
"hu": right_neck_hu,
},
}
def get_femural_head_roi(
femur_mask,
medical_volume,
output_dir,
anatomy,
visualize_method=False,
min_pixel_count=20,
):
top = np.where(femur_mask.sum(axis=(0, 1)) != 0)[0].max()
top_mask = femur_mask[:, :, top]
print(f"======== Computing {anatomy} femur ROIs ========")
while True:
labeled, num_features = ndi.label(top_mask)
component_sizes = np.bincount(labeled.ravel())
valid_components = np.where(component_sizes >= min_pixel_count)[0][1:]
if len(valid_components) == 2:
break
top -= 1
if top < 0:
print("Two connected components not found in the femur mask.")
break
top_mask = femur_mask[:, :, top]
if len(valid_components) == 2:
# Find the center of mass for each connected component
center_of_mass_1 = list(
ndi.center_of_mass(top_mask, labeled, valid_components[0])
)
center_of_mass_2 = list(
ndi.center_of_mass(top_mask, labeled, valid_components[1])
)
# Assign left_center_of_mass to be the center of mass with lowest value in the first dimension
if center_of_mass_1[0] < center_of_mass_2[0]:
left_center_of_mass = center_of_mass_1
right_center_of_mass = center_of_mass_2
else:
left_center_of_mass = center_of_mass_2
right_center_of_mass = center_of_mass_1
print(f"Left center of mass: {left_center_of_mass}")
print(f"Right center of mass: {right_center_of_mass}")
if anatomy == "left_intertrochanter" or anatomy == "right_head":
center_of_mass = left_center_of_mass
elif anatomy == "right_intertrochanter" or anatomy == "left_head":
center_of_mass = right_center_of_mass
coronal_slice = femur_mask[:, round(center_of_mass[1]), :]
coronal_image = medical_volume.get_fdata()[:, round(center_of_mass[1]), :]
sagittal_slice = femur_mask[round(center_of_mass[0]), :, :]
sagittal_image = medical_volume.get_fdata()[round(center_of_mass[0]), :, :]
zooms = medical_volume.header.get_zooms()
zoom_factor = zooms[2] / zooms[1]
coronal_slice = zoom(coronal_slice, (1, zoom_factor), order=1).round()
coronal_image = zoom(coronal_image, (1, zoom_factor), order=3).round()
sagittal_image = zoom(sagittal_image, (1, zoom_factor), order=3).round()
centroid = [round(center_of_mass[0]), 0, 0]
print(f"Starting centroid: {centroid}")
for _ in range(3):
sagittal_slice = femur_mask[centroid[0], :, :]
sagittal_slice = zoom(sagittal_slice, (1, zoom_factor), order=1).round()
centroid[1], centroid[2], radius_sagittal = inscribe_sagittal(
sagittal_slice, zoom_factor
)
print(f"Centroid after inscribe sagittal: {centroid}")
axial_slice = femur_mask[:, :, centroid[2]]
if anatomy == "left_intertrochanter" or anatomy == "right_head":
axial_slice[round(right_center_of_mass[0]) :, :] = 0
elif anatomy == "right_intertrochanter" or anatomy == "left_head":
axial_slice[: round(left_center_of_mass[0]), :] = 0
centroid[0], centroid[1], radius_axial = inscribe_axial(axial_slice)
print(f"Centroid after inscribe axial: {centroid}")
axial_image = medical_volume.get_fdata()[:, :, round(centroid[2])]
sagittal_image = medical_volume.get_fdata()[round(centroid[0]), :, :]
sagittal_image = zoom(sagittal_image, (1, zoom_factor), order=3).round()
if visualize_method:
method_visualizer(
sagittal_image,
axial_image,
axial_slice,
sagittal_slice,
[centroid[2], centroid[1]],
radius_sagittal,
[centroid[1], centroid[0]],
radius_axial,
output_dir,
anatomy,
)
roi = compute_hip_roi(medical_volume, centroid, radius_sagittal, radius_axial)
# selem = ndi.generate_binary_structure(3, 1)
selem = ball(3)
femur_mask_eroded = binary_erosion(femur_mask, selem)
roi = roi * femur_mask_eroded
roi_eroded = roi.astype(np.uint8)
hu = get_mean_roi_hu(medical_volume, roi_eroded)
return (roi_eroded, centroid, hu)
def get_femural_neck_roi(
femur_mask,
medical_volume,
intertrochanter_roi,
intertrochanter_centroid,
head_roi,
head_centroid,
output_dir,
):
zooms = medical_volume.header.get_zooms()
direction_vector = np.array(head_centroid) - np.array(intertrochanter_centroid)
unit_direction_vector = direction_vector / np.linalg.norm(direction_vector)
z, y, x = np.where(intertrochanter_roi)
intertrochanter_points = np.column_stack((z, y, x))
t_start = np.dot(
intertrochanter_points - intertrochanter_centroid, unit_direction_vector
).max()
z, y, x = np.where(head_roi)
head_points = np.column_stack((z, y, x))
t_end = (
np.linalg.norm(direction_vector)
+ np.dot(head_points - head_centroid, unit_direction_vector).min()
)
z, y, x = np.indices(femur_mask.shape)
coordinates = np.stack((z, y, x), axis=-1)
distance_to_line_origin = np.dot(
coordinates - intertrochanter_centroid, unit_direction_vector
)
coordinates_zoomed = coordinates * zooms
intertrochanter_centroid_zoomed = np.array(intertrochanter_centroid) * zooms
unit_direction_vector_zoomed = unit_direction_vector * zooms
distance_to_line = np.linalg.norm(
np.cross(
coordinates_zoomed - intertrochanter_centroid_zoomed,
coordinates_zoomed
- (intertrochanter_centroid_zoomed + unit_direction_vector_zoomed),
),
axis=-1,
) / np.linalg.norm(unit_direction_vector_zoomed)
cylinder_radius = 10
cylinder_mask = (
(distance_to_line <= cylinder_radius)
& (distance_to_line_origin >= t_start)
& (distance_to_line_origin <= t_end)
)
# selem = ndi.generate_binary_structure(3, 1)
selem = ball(3)
femur_mask_eroded = binary_erosion(femur_mask, selem)
roi = cylinder_mask * femur_mask_eroded
neck_roi = roi.astype(np.uint8)
hu = get_mean_roi_hu(medical_volume, neck_roi)
centroid = list(
intertrochanter_centroid + unit_direction_vector * (t_start + t_end) / 2
)
centroid = [round(x) for x in centroid]
return neck_roi, centroid, hu
def compute_hip_roi(img, centroid, radius_sagittal, radius_axial):
pixel_spacing = img.header.get_zooms()
length_i = radius_axial * 0.75 / pixel_spacing[0]
length_j = radius_axial * 0.75 / pixel_spacing[1]
length_k = radius_sagittal * 0.75 / pixel_spacing[2]
roi = np.zeros(img.get_fdata().shape, dtype=np.uint8)
i_lower = math.floor(centroid[0] - length_i)
j_lower = math.floor(centroid[1] - length_j)
k_lower = math.floor(centroid[2] - length_k)
for i in range(i_lower, i_lower + 2 * math.ceil(length_i) + 1):
for j in range(j_lower, j_lower + 2 * math.ceil(length_j) + 1):
for k in range(k_lower, k_lower + 2 * math.ceil(length_k) + 1):
if (i - centroid[0]) ** 2 / length_i**2 + (
j - centroid[1]
) ** 2 / length_j**2 + (k - centroid[2]) ** 2 / length_k**2 <= 1:
roi[i, j, k] = 1
return roi
def inscribe_axial(axial_mask):
dist_map = cv2.distanceTransform(axial_mask, cv2.DIST_L2, cv2.DIST_MASK_PRECISE)
_, radius_axial, _, center_axial = cv2.minMaxLoc(dist_map)
center_axial = list(center_axial)
left_right_center = round(center_axial[1])
posterior_anterior_center = round(center_axial[0])
return left_right_center, posterior_anterior_center, radius_axial
def inscribe_sagittal(sagittal_mask, zoom_factor):
dist_map = cv2.distanceTransform(sagittal_mask, cv2.DIST_L2, cv2.DIST_MASK_PRECISE)
_, radius_sagittal, _, center_sagittal = cv2.minMaxLoc(dist_map)
center_sagittal = list(center_sagittal)
posterior_anterior_center = round(center_sagittal[1])
inferior_superior_center = round(center_sagittal[0])
inferior_superior_center = round(inferior_superior_center / zoom_factor)
return posterior_anterior_center, inferior_superior_center, radius_sagittal
def get_mean_roi_hu(medical_volume, roi):
masked_medical_volume = medical_volume.get_fdata() * roi
return np.mean(masked_medical_volume[masked_medical_volume != 0])
|