Spaces:
Sleeping
Sleeping
File size: 14,162 Bytes
a3290d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
import argparse
import os
import pickle
import sys
import nibabel as nib
import numpy as np
import scipy
import SimpleITK as sitk
from scipy import ndimage as ndi
def loadNiiToArray(path):
NiImg = nib.load(path)
array = np.array(NiImg.dataobj)
return array
def loadNiiWithSitk(path):
reader = sitk.ImageFileReader()
reader.SetImageIO("NiftiImageIO")
reader.SetFileName(path)
image = reader.Execute()
array = sitk.GetArrayFromImage(image)
return array
def loadNiiImageWithSitk(path):
reader = sitk.ImageFileReader()
reader.SetImageIO("NiftiImageIO")
reader.SetFileName(path)
image = reader.Execute()
# invert the image to be compatible with Nibabel
image = sitk.Flip(image, [False, True, False])
return image
def keep_masked_values(arr, mask):
# Get the indices of the non-zero elements in the mask
mask_indices = np.nonzero(mask)
# Use the indices to select the corresponding elements from the array
masked_values = arr[mask_indices]
# Return the selected elements as a new array
return masked_values
def get_stats(arr):
# # Get the indices of the non-zero elements in the array
# nonzero_indices = np.nonzero(arr)
# # Use the indices to get the non-zero elements of the array
# nonzero_elements = arr[nonzero_indices]
nonzero_elements = arr
# Calculate the stats for the non-zero elements
max_val = np.max(nonzero_elements)
min_val = np.min(nonzero_elements)
mean_val = np.mean(nonzero_elements)
median_val = np.median(nonzero_elements)
std_val = np.std(nonzero_elements)
variance_val = np.var(nonzero_elements)
return max_val, min_val, mean_val, median_val, std_val, variance_val
def getMaskAnteriorAtrium(mask):
erasePreAtriumMask = mask.copy()
for sliceNum in range(mask.shape[-1]):
mask2D = mask[:, :, sliceNum]
itemindex = np.where(mask2D == 1)
if itemindex[0].size > 0:
row = itemindex[0][0]
erasePreAtriumMask[:, :, sliceNum][:row, :] = 1
return erasePreAtriumMask
"""
Function from
https://stackoverflow.com/questions/46310603/how-to-compute-convex-hull-image-volume-in-3d-numpy-arrays/46314485#46314485
"""
def fill_hull(image):
points = np.transpose(np.where(image))
hull = scipy.spatial.ConvexHull(points)
deln = scipy.spatial.Delaunay(points[hull.vertices])
idx = np.stack(np.indices(image.shape), axis=-1)
out_idx = np.nonzero(deln.find_simplex(idx) + 1)
out_img = np.zeros(image.shape)
out_img[out_idx] = 1
return out_img
def getClassBinaryMask(TSOutArray, classNum):
binaryMask = np.zeros(TSOutArray.shape)
binaryMask[TSOutArray == classNum] = 1
return binaryMask
def loadNiftis(TSNiftiPath, imageNiftiPath):
TSArray = loadNiiToArray(TSNiftiPath)
scanArray = loadNiiToArray(imageNiftiPath)
return TSArray, scanArray
# function to select one slice from 3D volume of SimpleITK image
def selectSlice(scanImage, zslice):
size = list(scanImage.GetSize())
size[2] = 0
index = [0, 0, zslice]
Extractor = sitk.ExtractImageFilter()
Extractor.SetSize(size)
Extractor.SetIndex(index)
sliceImage = Extractor.Execute(scanImage)
return sliceImage
# function to apply windowing
def windowing(sliceImage, center=400, width=400):
windowMinimum = center - (width / 2)
windowMaximum = center + (width / 2)
img_255 = sitk.Cast(
sitk.IntensityWindowing(
sliceImage,
windowMinimum=-windowMinimum,
windowMaximum=windowMaximum,
outputMinimum=0.0,
outputMaximum=255.0,
),
sitk.sitkUInt8,
)
return img_255
def selectSampleSlice(kidneyLMask, adRMask, scanImage):
# Get the middle slice of the kidney mask from where there is the first 1 value to the last 1 value
middleSlice = np.where(kidneyLMask.sum(axis=(0, 1)) > 0)[0][0] + int(
(
np.where(kidneyLMask.sum(axis=(0, 1)) > 0)[0][-1]
- np.where(kidneyLMask.sum(axis=(0, 1)) > 0)[0][0]
)
/ 2
)
# print("Middle slice: ", middleSlice)
# make middleSlice int
middleSlice = int(middleSlice)
# select one slice using simple itk
sliceImageK = selectSlice(scanImage, middleSlice)
# Get the middle slice of the addrenal mask from where there is the first 1 value to the last 1 value
middleSlice = np.where(adRMask.sum(axis=(0, 1)) > 0)[0][0] + int(
(
np.where(adRMask.sum(axis=(0, 1)) > 0)[0][-1]
- np.where(adRMask.sum(axis=(0, 1)) > 0)[0][0]
)
/ 2
)
# print("Middle slice: ", middleSlice)
# make middleSlice int
middleSlice = int(middleSlice)
# select one slice using simple itk
sliceImageA = selectSlice(scanImage, middleSlice)
sliceImageK = windowing(sliceImageK)
sliceImageA = windowing(sliceImageA)
return sliceImageK, sliceImageA
def getFeatures(TSArray, scanArray):
aortaMask = getClassBinaryMask(TSArray, 7)
IVCMask = getClassBinaryMask(TSArray, 8)
portalMask = getClassBinaryMask(TSArray, 9)
atriumMask = getClassBinaryMask(TSArray, 45)
kidneyLMask = getClassBinaryMask(TSArray, 3)
kidneyRMask = getClassBinaryMask(TSArray, 2)
adRMask = getClassBinaryMask(TSArray, 11)
# Remove toraccic aorta adn IVC from aorta and IVC masks
anteriorAtriumMask = getMaskAnteriorAtrium(atriumMask)
aortaMask = aortaMask * (anteriorAtriumMask == 0)
IVCMask = IVCMask * (anteriorAtriumMask == 0)
# Erode vessels to get only the center of the vessels
struct2 = np.ones((3, 3, 3))
aortaMaskEroded = ndi.binary_erosion(aortaMask, structure=struct2).astype(
aortaMask.dtype
)
IVCMaskEroded = ndi.binary_erosion(IVCMask, structure=struct2).astype(IVCMask.dtype)
struct3 = np.ones((1, 1, 1))
portalMaskEroded = ndi.binary_erosion(portalMask, structure=struct3).astype(
portalMask.dtype
)
# If portalMaskEroded has less then 500 values, use the original portalMask
if np.count_nonzero(portalMaskEroded) < 500:
portalMaskEroded = portalMask
# Get masked values from scan
aortaArray = keep_masked_values(scanArray, aortaMaskEroded)
IVCArray = keep_masked_values(scanArray, IVCMaskEroded)
portalArray = keep_masked_values(scanArray, portalMaskEroded)
kidneyLArray = keep_masked_values(scanArray, kidneyLMask)
kidneyRArray = keep_masked_values(scanArray, kidneyRMask)
"""Put this on a separate function and return only the pelvis arrays"""
# process the Renal Pelvis masks from the Kidney masks
# create the convex hull of the Left Kidney
kidneyLHull = fill_hull(kidneyLMask)
# exclude the Left Kidney mask from the Left Convex Hull
kidneyLHull = kidneyLHull * (kidneyLMask == 0)
# erode the kidneyHull to remove the edges
struct = np.ones((3, 3, 3))
kidneyLHull = ndi.binary_erosion(kidneyLHull, structure=struct).astype(
kidneyLHull.dtype
)
# keep the values of the scanArray that are in the Left Convex Hull
pelvisLArray = keep_masked_values(scanArray, kidneyLHull)
# create the convex hull of the Right Kidney
kidneyRHull = fill_hull(kidneyRMask)
# exclude the Right Kidney mask from the Right Convex Hull
kidneyRHull = kidneyRHull * (kidneyRMask == 0)
# erode the kidneyHull to remove the edges
struct = np.ones((3, 3, 3))
kidneyRHull = ndi.binary_erosion(kidneyRHull, structure=struct).astype(
kidneyRHull.dtype
)
# keep the values of the scanArray that are in the Right Convex Hull
pelvisRArray = keep_masked_values(scanArray, kidneyRHull)
# Get the stats
# Get the stats for the aortaArray
(
aorta_max_val,
aorta_min_val,
aorta_mean_val,
aorta_median_val,
aorta_std_val,
aorta_variance_val,
) = get_stats(aortaArray)
# Get the stats for the IVCArray
(
IVC_max_val,
IVC_min_val,
IVC_mean_val,
IVC_median_val,
IVC_std_val,
IVC_variance_val,
) = get_stats(IVCArray)
# Get the stats for the portalArray
(
portal_max_val,
portal_min_val,
portal_mean_val,
portal_median_val,
portal_std_val,
portal_variance_val,
) = get_stats(portalArray)
# Get the stats for the kidneyLArray and kidneyRArray
(
kidneyL_max_val,
kidneyL_min_val,
kidneyL_mean_val,
kidneyL_median_val,
kidneyL_std_val,
kidneyL_variance_val,
) = get_stats(kidneyLArray)
(
kidneyR_max_val,
kidneyR_min_val,
kidneyR_mean_val,
kidneyR_median_val,
kidneyR_std_val,
kidneyR_variance_val,
) = get_stats(kidneyRArray)
(
pelvisL_max_val,
pelvisL_min_val,
pelvisL_mean_val,
pelvisL_median_val,
pelvisL_std_val,
pelvisL_variance_val,
) = get_stats(pelvisLArray)
(
pelvisR_max_val,
pelvisR_min_val,
pelvisR_mean_val,
pelvisR_median_val,
pelvisR_std_val,
pelvisR_variance_val,
) = get_stats(pelvisRArray)
# create three new columns for the decision tree
# aorta - porta, Max min and mean columns
aorta_porta_max = aorta_max_val - portal_max_val
aorta_porta_min = aorta_min_val - portal_min_val
aorta_porta_mean = aorta_mean_val - portal_mean_val
# aorta - IVC, Max min and mean columns
aorta_IVC_max = aorta_max_val - IVC_max_val
aorta_IVC_min = aorta_min_val - IVC_min_val
aorta_IVC_mean = aorta_mean_val - IVC_mean_val
# Save stats in CSV:
# Create a list to store the stats
stats = []
# Add the stats for the aortaArray to the list
stats.extend(
[
aorta_max_val,
aorta_min_val,
aorta_mean_val,
aorta_median_val,
aorta_std_val,
aorta_variance_val,
]
)
# Add the stats for the IVCArray to the list
stats.extend(
[
IVC_max_val,
IVC_min_val,
IVC_mean_val,
IVC_median_val,
IVC_std_val,
IVC_variance_val,
]
)
# Add the stats for the portalArray to the list
stats.extend(
[
portal_max_val,
portal_min_val,
portal_mean_val,
portal_median_val,
portal_std_val,
portal_variance_val,
]
)
# Add the stats for the kidneyLArray and kidneyRArray to the list
stats.extend(
[
kidneyL_max_val,
kidneyL_min_val,
kidneyL_mean_val,
kidneyL_median_val,
kidneyL_std_val,
kidneyL_variance_val,
]
)
stats.extend(
[
kidneyR_max_val,
kidneyR_min_val,
kidneyR_mean_val,
kidneyR_median_val,
kidneyR_std_val,
kidneyR_variance_val,
]
)
# Add the stats for the kidneyLHull and kidneyRHull to the list
stats.extend(
[
pelvisL_max_val,
pelvisL_min_val,
pelvisL_mean_val,
pelvisL_median_val,
pelvisL_std_val,
pelvisL_variance_val,
]
)
stats.extend(
[
pelvisR_max_val,
pelvisR_min_val,
pelvisR_mean_val,
pelvisR_median_val,
pelvisR_std_val,
pelvisR_variance_val,
]
)
stats.extend(
[
aorta_porta_max,
aorta_porta_min,
aorta_porta_mean,
aorta_IVC_max,
aorta_IVC_min,
aorta_IVC_mean,
]
)
return stats, kidneyLMask, adRMask
def loadModel():
c2cPath = os.path.dirname(sys.path[0])
filename = os.path.join(c2cPath, "comp2comp", "contrast_phase", "xgboost.pkl")
model = pickle.load(open(filename, "rb"))
return model
def predict_phase(TS_path, scan_path, outputPath=None, save_sample=False):
TS_array, image_array = loadNiftis(TS_path, scan_path)
model = loadModel()
# TS_array, image_array = loadNiftis(TS_output_nifti_path, image_nifti_path)
featureArray, kidneyLMask, adRMask = getFeatures(TS_array, image_array)
y_pred = model.predict([featureArray])
if y_pred == 0:
pred_phase = "non-contrast"
if y_pred == 1:
pred_phase = "arterial"
if y_pred == 2:
pred_phase = "venous"
if y_pred == 3:
pred_phase = "delayed"
output_path_metrics = os.path.join(outputPath, "metrics")
if not os.path.exists(output_path_metrics):
os.makedirs(output_path_metrics)
outputTxt = os.path.join(output_path_metrics, "phase_prediction.txt")
with open(outputTxt, "w") as text_file:
text_file.write(pred_phase)
print(pred_phase)
output_path_images = os.path.join(outputPath, "images")
if not os.path.exists(output_path_images):
os.makedirs(output_path_images)
scanImage = loadNiiImageWithSitk(scan_path)
sliceImageK, sliceImageA = selectSampleSlice(kidneyLMask, adRMask, scanImage)
outJpgK = os.path.join(output_path_images, "sampleSliceKidney.png")
sitk.WriteImage(sliceImageK, outJpgK)
outJpgA = os.path.join(output_path_images, "sampleSliceAdrenal.png")
sitk.WriteImage(sliceImageA, outJpgA)
if __name__ == "__main__":
# parse arguments optional
parser = argparse.ArgumentParser()
parser.add_argument("--TS_path", type=str, required=True, help="Input image")
parser.add_argument("--scan_path", type=str, required=True, help="Input image")
parser.add_argument(
"--output_dir",
type=str,
required=False,
help="Output .txt prediction",
default=None,
)
parser.add_argument(
"--save_sample",
type=bool,
required=False,
help="Save jpeg sample ",
default=False,
)
args = parser.parse_args()
predict_phase(args.TS_path, args.scan_path, args.output_dir, args.save_sample)
|