File size: 9,385 Bytes
a3290d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import os

import matplotlib.pyplot as plt
import numpy as np
import scipy
from matplotlib.colors import ListedColormap
from PIL import Image


def extract_axial_mid_slice(ct, mask, crop=True):
    slice_idx = np.argmax(mask.sum(axis=(0, 1)))

    ct_slice_z = np.transpose(ct[:, :, slice_idx], axes=(1, 0))
    mask_slice_z = np.transpose(mask[:, :, slice_idx], axes=(1, 0))

    ct_slice_z = np.flip(ct_slice_z, axis=(0, 1))
    mask_slice_z = np.flip(mask_slice_z, axis=(0, 1))

    if crop:
        ct_range_x = np.where(ct_slice_z.max(axis=0) > -200)[0][[0, -1]]

        ct_slice_z = ct_slice_z[
            ct_range_x[0] : ct_range_x[1], ct_range_x[0] : ct_range_x[1]
        ]
        mask_slice_z = mask_slice_z[
            ct_range_x[0] : ct_range_x[1], ct_range_x[0] : ct_range_x[1]
        ]

    return ct_slice_z, mask_slice_z


def extract_coronal_mid_slice(ct, mask, crop=True):
    # find the slice with max coherent extent of the organ
    coronary_extent = np.where(mask.sum(axis=(0, 2)))[0]

    max_extent = 0
    max_extent_idx = 0

    for idx in coronary_extent:
        label, num_features = scipy.ndimage.label(mask[:, idx, :])

        if num_features > 1:
            continue
        else:
            extent = len(np.where(label.sum(axis=1))[0])
            if extent > max_extent:
                max_extent = extent
                max_extent_idx = idx

    ct_slice_y = np.transpose(ct[:, max_extent_idx, :], axes=(1, 0))
    mask_slice_y = np.transpose(mask[:, max_extent_idx, :], axes=(1, 0))

    ct_slice_y = np.flip(ct_slice_y, axis=1)
    mask_slice_y = np.flip(mask_slice_y, axis=1)

    return ct_slice_y, mask_slice_y


def save_slice(
    ct_slice,
    mask_slice,
    path,
    figsize=(12, 12),
    corner_text=None,
    unit_dict=None,
    aspect=1,
    show=False,
    xy_placement=None,
    class_color=1,
    fontsize=14,
):
    # colormap for shown segmentations
    color_array = plt.get_cmap("tab10")(range(10))
    color_array = np.concatenate((np.array([[0, 0, 0, 0]]), color_array[:, :]), axis=0)
    map_object_seg = ListedColormap(name="segmentation_cmap", colors=color_array)

    fig, axx = plt.subplots(1, figsize=figsize, frameon=False)
    axx.imshow(
        ct_slice,
        cmap="gray",
        vmin=-400,
        vmax=400,
        interpolation="spline36",
        aspect=aspect,
        origin="lower",
    )
    axx.imshow(
        mask_slice * class_color,
        cmap=map_object_seg,
        vmin=0,
        vmax=9,
        alpha=0.2,
        interpolation="nearest",
        aspect=aspect,
        origin="lower",
    )

    plt.axis("off")
    axx.axes.get_xaxis().set_visible(False)
    axx.axes.get_yaxis().set_visible(False)

    y_size, x_size = ct_slice.shape

    if corner_text is not None:
        bbox_props = dict(boxstyle="round", facecolor="gray", alpha=0.5)

        texts = []
        for k, v in corner_text.items():
            if isinstance(v, str):
                texts.append("{:<9}{}".format(k + ":", v))
            else:
                unit = unit_dict[k] if k in unit_dict else ""
                texts.append("{:<9}{:.0f} {}".format(k + ":", v, unit))

        if xy_placement is None:
            # get the extent of textbox, remove, and the plot again with correct position
            t = axx.text(
                0.5,
                0.5,
                "\n".join(texts),
                color="white",
                transform=axx.transAxes,
                fontsize=fontsize,
                family="monospace",
                bbox=bbox_props,
                va="top",
                ha="left",
            )
            xmin, xmax = t.get_window_extent().xmin, t.get_window_extent().xmax
            xmin, xmax = axx.transAxes.inverted().transform((xmin, xmax))

            xy_placement = [1 - (xmax - xmin) - (xmax - xmin) * 0.09, 0.975]
            t.remove()

        axx.text(
            xy_placement[0],
            xy_placement[1],
            "\n".join(texts),
            color="white",
            transform=axx.transAxes,
            fontsize=fontsize,
            family="monospace",
            bbox=bbox_props,
            va="top",
            ha="left",
        )

    if show:
        plt.show()
    else:
        fig.savefig(path, bbox_inches="tight", pad_inches=0)
        plt.close(fig)


def slicedDilationOrErosion(input_mask, num_iteration, operation):
    """
    Perform the dilation on the smallest slice that will fit the
    segmentation
    """
    margin = 2 if num_iteration is None else num_iteration + 1

    # find the minimum volume enclosing the organ
    x_idx = np.where(input_mask.sum(axis=(1, 2)))[0]
    x_start, x_end = x_idx[0] - margin, x_idx[-1] + margin
    y_idx = np.where(input_mask.sum(axis=(0, 2)))[0]
    y_start, y_end = y_idx[0] - margin, y_idx[-1] + margin
    z_idx = np.where(input_mask.sum(axis=(0, 1)))[0]
    z_start, z_end = z_idx[0] - margin, z_idx[-1] + margin

    struct = scipy.ndimage.generate_binary_structure(3, 1)
    struct = scipy.ndimage.iterate_structure(struct, num_iteration)

    if operation == "dilate":
        mask_slice = scipy.ndimage.binary_dilation(
            input_mask[x_start:x_end, y_start:y_end, z_start:z_end], structure=struct
        ).astype(np.int8)
    elif operation == "erode":
        mask_slice = scipy.ndimage.binary_erosion(
            input_mask[x_start:x_end, y_start:y_end, z_start:z_end], structure=struct
        ).astype(np.int8)

    output_mask = input_mask.copy()

    output_mask[x_start:x_end, y_start:y_end, z_start:z_end] = mask_slice

    return output_mask


def extract_organ_metrics(
    ct, all_masks, class_num=None, vol_per_pixel=None, erode_mask=True
):
    if erode_mask:
        eroded_mask = slicedDilationOrErosion(
            input_mask=(all_masks == class_num), num_iteration=3, operation="erode"
        )
        ct_organ_vals = ct[eroded_mask == 1]
    else:
        ct_organ_vals = ct[all_masks == class_num]

    results = {}

    # in ml
    organ_vol = (all_masks == class_num).sum() * vol_per_pixel
    organ_mean = ct_organ_vals.mean()
    organ_median = np.median(ct_organ_vals)

    results = {
        "Organ": class_map_part_organs[class_num],
        "Volume": organ_vol,
        "Mean": organ_mean,
        "Median": organ_median,
    }

    return results


def generate_slice_images(
    ct,
    all_masks,
    class_nums,
    unit_dict,
    vol_per_pixel,
    pix_dims,
    root,
    fontsize=20,
    show=False,
):
    all_results = {}

    colors = [1, 3, 4]

    for i, c_num in enumerate(class_nums):
        organ_name = class_map_part_organs[c_num]

        axial_path = os.path.join(root, organ_name.lower() + "_axial.png")
        coronal_path = os.path.join(root, organ_name.lower() + "_coronal.png")

        ct_slice_z, liver_slice_z = extract_axial_mid_slice(ct, all_masks == c_num)
        results = extract_organ_metrics(
            ct, all_masks, class_num=c_num, vol_per_pixel=vol_per_pixel
        )

        save_slice(
            ct_slice_z,
            liver_slice_z,
            axial_path,
            figsize=(12, 12),
            corner_text=results,
            unit_dict=unit_dict,
            class_color=colors[i],
            fontsize=fontsize,
            show=show,
        )

        ct_slice_y, liver_slice_y = extract_coronal_mid_slice(ct, all_masks == c_num)

        save_slice(
            ct_slice_y,
            liver_slice_y,
            coronal_path,
            figsize=(12, 12),
            aspect=pix_dims[2] / pix_dims[1],
            show=show,
            class_color=colors[i],
        )

        all_results[results["Organ"]] = results

    if show:
        return

    return all_results


def generate_liver_spleen_pancreas_report(root, organ_names):
    axial_imgs = [
        Image.open(os.path.join(root, organ + "_axial.png")) for organ in organ_names
    ]
    coronal_imgs = [
        Image.open(os.path.join(root, organ + "_coronal.png")) for organ in organ_names
    ]

    result_width = max(
        sum([img.size[0] for img in axial_imgs]),
        sum([img.size[0] for img in coronal_imgs]),
    )
    result_height = max(
        [a.size[1] + c.size[1] for a, c in zip(axial_imgs, coronal_imgs)]
    )

    result = Image.new("RGB", (result_width, result_height))

    total_width = 0

    for a_img, c_img in zip(axial_imgs, coronal_imgs):
        a_width, a_height = a_img.size
        c_width, c_height = c_img.size

        translate = (a_width - c_width) // 2 if a_width > c_width else 0

        result.paste(im=a_img, box=(total_width, 0))
        result.paste(im=c_img, box=(translate + total_width, a_height))

        total_width += a_width

    result.save(os.path.join(root, "liver_spleen_pancreas_report.png"))


# from https://github.com/wasserth/TotalSegmentator/blob/master/totalsegmentator/map_to_binary.py

class_map_part_organs = {
    1: "Spleen",
    2: "Right Kidney",
    3: "Left Kidney",
    4: "Gallbladder",
    5: "Liver",
    6: "Stomach",
    7: "Aorta",
    8: "Inferior vena cava",
    9: "portal Vein and Splenic Vein",
    10: "Pancreas",
    11: "Right Adrenal Gland",
    12: "Left Adrenal Gland Left",
    13: "lung_upper_lobe_left",
    14: "lung_lower_lobe_left",
    15: "lung_upper_lobe_right",
    16: "lung_middle_lobe_right",
    17: "lung_lower_lobe_right",
}