AdritRao's picture
Upload 62 files
a3290d1
raw
history blame
14.2 kB
import argparse
import os
import pickle
import sys
import nibabel as nib
import numpy as np
import scipy
import SimpleITK as sitk
from scipy import ndimage as ndi
def loadNiiToArray(path):
NiImg = nib.load(path)
array = np.array(NiImg.dataobj)
return array
def loadNiiWithSitk(path):
reader = sitk.ImageFileReader()
reader.SetImageIO("NiftiImageIO")
reader.SetFileName(path)
image = reader.Execute()
array = sitk.GetArrayFromImage(image)
return array
def loadNiiImageWithSitk(path):
reader = sitk.ImageFileReader()
reader.SetImageIO("NiftiImageIO")
reader.SetFileName(path)
image = reader.Execute()
# invert the image to be compatible with Nibabel
image = sitk.Flip(image, [False, True, False])
return image
def keep_masked_values(arr, mask):
# Get the indices of the non-zero elements in the mask
mask_indices = np.nonzero(mask)
# Use the indices to select the corresponding elements from the array
masked_values = arr[mask_indices]
# Return the selected elements as a new array
return masked_values
def get_stats(arr):
# # Get the indices of the non-zero elements in the array
# nonzero_indices = np.nonzero(arr)
# # Use the indices to get the non-zero elements of the array
# nonzero_elements = arr[nonzero_indices]
nonzero_elements = arr
# Calculate the stats for the non-zero elements
max_val = np.max(nonzero_elements)
min_val = np.min(nonzero_elements)
mean_val = np.mean(nonzero_elements)
median_val = np.median(nonzero_elements)
std_val = np.std(nonzero_elements)
variance_val = np.var(nonzero_elements)
return max_val, min_val, mean_val, median_val, std_val, variance_val
def getMaskAnteriorAtrium(mask):
erasePreAtriumMask = mask.copy()
for sliceNum in range(mask.shape[-1]):
mask2D = mask[:, :, sliceNum]
itemindex = np.where(mask2D == 1)
if itemindex[0].size > 0:
row = itemindex[0][0]
erasePreAtriumMask[:, :, sliceNum][:row, :] = 1
return erasePreAtriumMask
"""
Function from
https://stackoverflow.com/questions/46310603/how-to-compute-convex-hull-image-volume-in-3d-numpy-arrays/46314485#46314485
"""
def fill_hull(image):
points = np.transpose(np.where(image))
hull = scipy.spatial.ConvexHull(points)
deln = scipy.spatial.Delaunay(points[hull.vertices])
idx = np.stack(np.indices(image.shape), axis=-1)
out_idx = np.nonzero(deln.find_simplex(idx) + 1)
out_img = np.zeros(image.shape)
out_img[out_idx] = 1
return out_img
def getClassBinaryMask(TSOutArray, classNum):
binaryMask = np.zeros(TSOutArray.shape)
binaryMask[TSOutArray == classNum] = 1
return binaryMask
def loadNiftis(TSNiftiPath, imageNiftiPath):
TSArray = loadNiiToArray(TSNiftiPath)
scanArray = loadNiiToArray(imageNiftiPath)
return TSArray, scanArray
# function to select one slice from 3D volume of SimpleITK image
def selectSlice(scanImage, zslice):
size = list(scanImage.GetSize())
size[2] = 0
index = [0, 0, zslice]
Extractor = sitk.ExtractImageFilter()
Extractor.SetSize(size)
Extractor.SetIndex(index)
sliceImage = Extractor.Execute(scanImage)
return sliceImage
# function to apply windowing
def windowing(sliceImage, center=400, width=400):
windowMinimum = center - (width / 2)
windowMaximum = center + (width / 2)
img_255 = sitk.Cast(
sitk.IntensityWindowing(
sliceImage,
windowMinimum=-windowMinimum,
windowMaximum=windowMaximum,
outputMinimum=0.0,
outputMaximum=255.0,
),
sitk.sitkUInt8,
)
return img_255
def selectSampleSlice(kidneyLMask, adRMask, scanImage):
# Get the middle slice of the kidney mask from where there is the first 1 value to the last 1 value
middleSlice = np.where(kidneyLMask.sum(axis=(0, 1)) > 0)[0][0] + int(
(
np.where(kidneyLMask.sum(axis=(0, 1)) > 0)[0][-1]
- np.where(kidneyLMask.sum(axis=(0, 1)) > 0)[0][0]
)
/ 2
)
# print("Middle slice: ", middleSlice)
# make middleSlice int
middleSlice = int(middleSlice)
# select one slice using simple itk
sliceImageK = selectSlice(scanImage, middleSlice)
# Get the middle slice of the addrenal mask from where there is the first 1 value to the last 1 value
middleSlice = np.where(adRMask.sum(axis=(0, 1)) > 0)[0][0] + int(
(
np.where(adRMask.sum(axis=(0, 1)) > 0)[0][-1]
- np.where(adRMask.sum(axis=(0, 1)) > 0)[0][0]
)
/ 2
)
# print("Middle slice: ", middleSlice)
# make middleSlice int
middleSlice = int(middleSlice)
# select one slice using simple itk
sliceImageA = selectSlice(scanImage, middleSlice)
sliceImageK = windowing(sliceImageK)
sliceImageA = windowing(sliceImageA)
return sliceImageK, sliceImageA
def getFeatures(TSArray, scanArray):
aortaMask = getClassBinaryMask(TSArray, 7)
IVCMask = getClassBinaryMask(TSArray, 8)
portalMask = getClassBinaryMask(TSArray, 9)
atriumMask = getClassBinaryMask(TSArray, 45)
kidneyLMask = getClassBinaryMask(TSArray, 3)
kidneyRMask = getClassBinaryMask(TSArray, 2)
adRMask = getClassBinaryMask(TSArray, 11)
# Remove toraccic aorta adn IVC from aorta and IVC masks
anteriorAtriumMask = getMaskAnteriorAtrium(atriumMask)
aortaMask = aortaMask * (anteriorAtriumMask == 0)
IVCMask = IVCMask * (anteriorAtriumMask == 0)
# Erode vessels to get only the center of the vessels
struct2 = np.ones((3, 3, 3))
aortaMaskEroded = ndi.binary_erosion(aortaMask, structure=struct2).astype(
aortaMask.dtype
)
IVCMaskEroded = ndi.binary_erosion(IVCMask, structure=struct2).astype(IVCMask.dtype)
struct3 = np.ones((1, 1, 1))
portalMaskEroded = ndi.binary_erosion(portalMask, structure=struct3).astype(
portalMask.dtype
)
# If portalMaskEroded has less then 500 values, use the original portalMask
if np.count_nonzero(portalMaskEroded) < 500:
portalMaskEroded = portalMask
# Get masked values from scan
aortaArray = keep_masked_values(scanArray, aortaMaskEroded)
IVCArray = keep_masked_values(scanArray, IVCMaskEroded)
portalArray = keep_masked_values(scanArray, portalMaskEroded)
kidneyLArray = keep_masked_values(scanArray, kidneyLMask)
kidneyRArray = keep_masked_values(scanArray, kidneyRMask)
"""Put this on a separate function and return only the pelvis arrays"""
# process the Renal Pelvis masks from the Kidney masks
# create the convex hull of the Left Kidney
kidneyLHull = fill_hull(kidneyLMask)
# exclude the Left Kidney mask from the Left Convex Hull
kidneyLHull = kidneyLHull * (kidneyLMask == 0)
# erode the kidneyHull to remove the edges
struct = np.ones((3, 3, 3))
kidneyLHull = ndi.binary_erosion(kidneyLHull, structure=struct).astype(
kidneyLHull.dtype
)
# keep the values of the scanArray that are in the Left Convex Hull
pelvisLArray = keep_masked_values(scanArray, kidneyLHull)
# create the convex hull of the Right Kidney
kidneyRHull = fill_hull(kidneyRMask)
# exclude the Right Kidney mask from the Right Convex Hull
kidneyRHull = kidneyRHull * (kidneyRMask == 0)
# erode the kidneyHull to remove the edges
struct = np.ones((3, 3, 3))
kidneyRHull = ndi.binary_erosion(kidneyRHull, structure=struct).astype(
kidneyRHull.dtype
)
# keep the values of the scanArray that are in the Right Convex Hull
pelvisRArray = keep_masked_values(scanArray, kidneyRHull)
# Get the stats
# Get the stats for the aortaArray
(
aorta_max_val,
aorta_min_val,
aorta_mean_val,
aorta_median_val,
aorta_std_val,
aorta_variance_val,
) = get_stats(aortaArray)
# Get the stats for the IVCArray
(
IVC_max_val,
IVC_min_val,
IVC_mean_val,
IVC_median_val,
IVC_std_val,
IVC_variance_val,
) = get_stats(IVCArray)
# Get the stats for the portalArray
(
portal_max_val,
portal_min_val,
portal_mean_val,
portal_median_val,
portal_std_val,
portal_variance_val,
) = get_stats(portalArray)
# Get the stats for the kidneyLArray and kidneyRArray
(
kidneyL_max_val,
kidneyL_min_val,
kidneyL_mean_val,
kidneyL_median_val,
kidneyL_std_val,
kidneyL_variance_val,
) = get_stats(kidneyLArray)
(
kidneyR_max_val,
kidneyR_min_val,
kidneyR_mean_val,
kidneyR_median_val,
kidneyR_std_val,
kidneyR_variance_val,
) = get_stats(kidneyRArray)
(
pelvisL_max_val,
pelvisL_min_val,
pelvisL_mean_val,
pelvisL_median_val,
pelvisL_std_val,
pelvisL_variance_val,
) = get_stats(pelvisLArray)
(
pelvisR_max_val,
pelvisR_min_val,
pelvisR_mean_val,
pelvisR_median_val,
pelvisR_std_val,
pelvisR_variance_val,
) = get_stats(pelvisRArray)
# create three new columns for the decision tree
# aorta - porta, Max min and mean columns
aorta_porta_max = aorta_max_val - portal_max_val
aorta_porta_min = aorta_min_val - portal_min_val
aorta_porta_mean = aorta_mean_val - portal_mean_val
# aorta - IVC, Max min and mean columns
aorta_IVC_max = aorta_max_val - IVC_max_val
aorta_IVC_min = aorta_min_val - IVC_min_val
aorta_IVC_mean = aorta_mean_val - IVC_mean_val
# Save stats in CSV:
# Create a list to store the stats
stats = []
# Add the stats for the aortaArray to the list
stats.extend(
[
aorta_max_val,
aorta_min_val,
aorta_mean_val,
aorta_median_val,
aorta_std_val,
aorta_variance_val,
]
)
# Add the stats for the IVCArray to the list
stats.extend(
[
IVC_max_val,
IVC_min_val,
IVC_mean_val,
IVC_median_val,
IVC_std_val,
IVC_variance_val,
]
)
# Add the stats for the portalArray to the list
stats.extend(
[
portal_max_val,
portal_min_val,
portal_mean_val,
portal_median_val,
portal_std_val,
portal_variance_val,
]
)
# Add the stats for the kidneyLArray and kidneyRArray to the list
stats.extend(
[
kidneyL_max_val,
kidneyL_min_val,
kidneyL_mean_val,
kidneyL_median_val,
kidneyL_std_val,
kidneyL_variance_val,
]
)
stats.extend(
[
kidneyR_max_val,
kidneyR_min_val,
kidneyR_mean_val,
kidneyR_median_val,
kidneyR_std_val,
kidneyR_variance_val,
]
)
# Add the stats for the kidneyLHull and kidneyRHull to the list
stats.extend(
[
pelvisL_max_val,
pelvisL_min_val,
pelvisL_mean_val,
pelvisL_median_val,
pelvisL_std_val,
pelvisL_variance_val,
]
)
stats.extend(
[
pelvisR_max_val,
pelvisR_min_val,
pelvisR_mean_val,
pelvisR_median_val,
pelvisR_std_val,
pelvisR_variance_val,
]
)
stats.extend(
[
aorta_porta_max,
aorta_porta_min,
aorta_porta_mean,
aorta_IVC_max,
aorta_IVC_min,
aorta_IVC_mean,
]
)
return stats, kidneyLMask, adRMask
def loadModel():
c2cPath = os.path.dirname(sys.path[0])
filename = os.path.join(c2cPath, "comp2comp", "contrast_phase", "xgboost.pkl")
model = pickle.load(open(filename, "rb"))
return model
def predict_phase(TS_path, scan_path, outputPath=None, save_sample=False):
TS_array, image_array = loadNiftis(TS_path, scan_path)
model = loadModel()
# TS_array, image_array = loadNiftis(TS_output_nifti_path, image_nifti_path)
featureArray, kidneyLMask, adRMask = getFeatures(TS_array, image_array)
y_pred = model.predict([featureArray])
if y_pred == 0:
pred_phase = "non-contrast"
if y_pred == 1:
pred_phase = "arterial"
if y_pred == 2:
pred_phase = "venous"
if y_pred == 3:
pred_phase = "delayed"
output_path_metrics = os.path.join(outputPath, "metrics")
if not os.path.exists(output_path_metrics):
os.makedirs(output_path_metrics)
outputTxt = os.path.join(output_path_metrics, "phase_prediction.txt")
with open(outputTxt, "w") as text_file:
text_file.write(pred_phase)
print(pred_phase)
output_path_images = os.path.join(outputPath, "images")
if not os.path.exists(output_path_images):
os.makedirs(output_path_images)
scanImage = loadNiiImageWithSitk(scan_path)
sliceImageK, sliceImageA = selectSampleSlice(kidneyLMask, adRMask, scanImage)
outJpgK = os.path.join(output_path_images, "sampleSliceKidney.png")
sitk.WriteImage(sliceImageK, outJpgK)
outJpgA = os.path.join(output_path_images, "sampleSliceAdrenal.png")
sitk.WriteImage(sliceImageA, outJpgA)
if __name__ == "__main__":
# parse arguments optional
parser = argparse.ArgumentParser()
parser.add_argument("--TS_path", type=str, required=True, help="Input image")
parser.add_argument("--scan_path", type=str, required=True, help="Input image")
parser.add_argument(
"--output_dir",
type=str,
required=False,
help="Output .txt prediction",
default=None,
)
parser.add_argument(
"--save_sample",
type=bool,
required=False,
help="Save jpeg sample ",
default=False,
)
args = parser.parse_args()
predict_phase(args.TS_path, args.scan_path, args.output_dir, args.save_sample)