Spaces:
Sleeping
Sleeping
Afrinetwork7
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -9,14 +9,15 @@ import logging
|
|
9 |
import torch
|
10 |
import librosa
|
11 |
from pathlib import Path
|
12 |
-
import magic # For MIME type detection
|
13 |
from pydub import AudioSegment
|
|
|
14 |
import traceback
|
15 |
from logging.handlers import RotatingFileHandler
|
16 |
import os
|
17 |
import boto3
|
18 |
from botocore.exceptions import NoCredentialsError
|
19 |
import time
|
|
|
20 |
|
21 |
# Import functions from other modules
|
22 |
from asr import transcribe, ASR_LANGUAGES
|
@@ -61,32 +62,62 @@ class TTSRequest(BaseModel):
|
|
61 |
language: str
|
62 |
speed: float
|
63 |
|
64 |
-
def
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
return sf.read(io.BytesIO(input_bytes))
|
73 |
-
elif mime_type.startswith('video/webm'):
|
74 |
-
audio = AudioSegment.from_file(io.BytesIO(input_bytes), format="webm")
|
75 |
-
audio_array = np.array(audio.get_array_of_samples())
|
76 |
-
sample_rate = audio.frame_rate
|
77 |
return audio_array, sample_rate
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
@app.post("/transcribe")
|
82 |
async def transcribe_audio(request: AudioRequest):
|
83 |
try:
|
84 |
input_bytes = base64.b64decode(request.audio)
|
85 |
-
audio_array, sample_rate =
|
86 |
-
|
87 |
-
# Convert to mono if stereo
|
88 |
-
if len(audio_array.shape) > 1:
|
89 |
-
audio_array = audio_array.mean(axis=1)
|
90 |
|
91 |
# Ensure audio_array is float32
|
92 |
audio_array = audio_array.astype(np.float32)
|
@@ -206,7 +237,7 @@ async def synthesize_speech(request: TTSRequest):
|
|
206 |
async def identify_language(request: AudioRequest):
|
207 |
try:
|
208 |
input_bytes = base64.b64decode(request.audio)
|
209 |
-
audio_array, sample_rate =
|
210 |
result = identify(audio_array)
|
211 |
return JSONResponse(content={"language_identification": result})
|
212 |
except Exception as e:
|
|
|
9 |
import torch
|
10 |
import librosa
|
11 |
from pathlib import Path
|
|
|
12 |
from pydub import AudioSegment
|
13 |
+
from moviepy.editor import VideoFileClip
|
14 |
import traceback
|
15 |
from logging.handlers import RotatingFileHandler
|
16 |
import os
|
17 |
import boto3
|
18 |
from botocore.exceptions import NoCredentialsError
|
19 |
import time
|
20 |
+
import tempfile
|
21 |
|
22 |
# Import functions from other modules
|
23 |
from asr import transcribe, ASR_LANGUAGES
|
|
|
62 |
language: str
|
63 |
speed: float
|
64 |
|
65 |
+
def extract_audio_from_file(input_bytes):
|
66 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.tmp') as temp_file:
|
67 |
+
temp_file.write(input_bytes)
|
68 |
+
temp_file_path = temp_file.name
|
69 |
+
|
70 |
+
try:
|
71 |
+
# First, try to read as a standard audio file
|
72 |
+
audio_array, sample_rate = sf.read(temp_file_path)
|
|
|
|
|
|
|
|
|
|
|
73 |
return audio_array, sample_rate
|
74 |
+
except Exception:
|
75 |
+
try:
|
76 |
+
# Try to read as a video file
|
77 |
+
video = VideoFileClip(temp_file_path)
|
78 |
+
audio = video.audio
|
79 |
+
if audio is not None:
|
80 |
+
# Extract audio from video
|
81 |
+
audio_array = audio.to_soundarray()
|
82 |
+
sample_rate = audio.fps
|
83 |
+
|
84 |
+
# Convert to mono if stereo
|
85 |
+
if len(audio_array.shape) > 1 and audio_array.shape[1] > 1:
|
86 |
+
audio_array = audio_array.mean(axis=1)
|
87 |
+
|
88 |
+
# Ensure audio is float32 and normalized
|
89 |
+
audio_array = audio_array.astype(np.float32)
|
90 |
+
audio_array /= np.max(np.abs(audio_array))
|
91 |
+
|
92 |
+
video.close()
|
93 |
+
return audio_array, sample_rate
|
94 |
+
else:
|
95 |
+
raise ValueError("Video file contains no audio")
|
96 |
+
except Exception:
|
97 |
+
# If video reading fails, try as generic audio with pydub
|
98 |
+
try:
|
99 |
+
audio = AudioSegment.from_file(temp_file_path)
|
100 |
+
audio_array = np.array(audio.get_array_of_samples())
|
101 |
+
|
102 |
+
# Convert to float32 and normalize
|
103 |
+
audio_array = audio_array.astype(np.float32) / (2**15 if audio.sample_width == 2 else 2**7)
|
104 |
+
|
105 |
+
# Convert stereo to mono if necessary
|
106 |
+
if audio.channels == 2:
|
107 |
+
audio_array = audio_array.reshape((-1, 2)).mean(axis=1)
|
108 |
+
|
109 |
+
return audio_array, audio.frame_rate
|
110 |
+
except Exception as e:
|
111 |
+
raise ValueError(f"Unsupported file format: {str(e)}")
|
112 |
+
finally:
|
113 |
+
# Clean up the temporary file
|
114 |
+
os.unlink(temp_file_path)
|
115 |
|
116 |
@app.post("/transcribe")
|
117 |
async def transcribe_audio(request: AudioRequest):
|
118 |
try:
|
119 |
input_bytes = base64.b64decode(request.audio)
|
120 |
+
audio_array, sample_rate = extract_audio_from_file(input_bytes)
|
|
|
|
|
|
|
|
|
121 |
|
122 |
# Ensure audio_array is float32
|
123 |
audio_array = audio_array.astype(np.float32)
|
|
|
237 |
async def identify_language(request: AudioRequest):
|
238 |
try:
|
239 |
input_bytes = base64.b64decode(request.audio)
|
240 |
+
audio_array, sample_rate = extract_audio_from_file(input_bytes)
|
241 |
result = identify(audio_array)
|
242 |
return JSONResponse(content={"language_identification": result})
|
243 |
except Exception as e:
|