Spaces:
Running
Running
<html lang="en"> | |
<head> | |
<meta charset="UTF-8"> | |
<meta name="viewport" content="width=device-width, initial-scale=1.0"> | |
<title>Sentiment Analysis Web App</title> | |
<link rel="stylesheet" href="style.css"> | |
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script> | |
</head> | |
<body> | |
<!--<header class="header"> | |
<h1>AI BATTLEGROUND 2023</h1> | |
</header>--> | |
<header class="header"> | |
<!-- Nagarro Logo --> | |
<img src="https://mma.prnewswire.com/media/844192/Nagarro_Logo.jpg" alt="Nagarro Logo" class="logo"> | |
<!-- Navbar --> | |
<nav class="navbar"> | |
<h1>AI BATTLEGROUND 2023</h1> | |
</nav> | |
</header> | |
<div class="container"> | |
<h1>Sentiment Analysis</h1> | |
<textarea id="textInput" placeholder="Enter text..."></textarea><br> | |
<button onclick="classifySentiment()">Classify</button> | |
<div id="result" class="result-container"></div> | |
<canvas id="chart"></canvas> | |
</div> | |
<footer class="footer"> | |
<p>© Team AIQA Designed By Agrim Ray </p> | |
</footer> | |
<script> | |
let chart; // Declare chart variable outside the function | |
async function query(data) { | |
try { | |
const response = await fetch( | |
"https://api-inference.huggingface.co/models/ahmedrachid/FinancialBERT-Sentiment-Analysis", | |
{ | |
headers: { Authorization: "Bearer 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" }, | |
method: "POST", | |
body: JSON.stringify(data), | |
} | |
); | |
if (!response.ok) { | |
throw new Error(`HTTP error! Status: ${response.status}`); | |
} | |
const result = await response.json(); | |
return result; | |
} catch (error) { | |
console.error("Error during API request:", error); | |
return { error: "Failed to get predictions from the model." }; | |
} | |
} | |
function classifySentiment() { | |
const textInput = document.getElementById("textInput").value; | |
const chartCanvas = document.getElementById("chart"); | |
if (textInput.trim() === "") { | |
alert("Please enter text for sentiment analysis."); | |
return; | |
} | |
const data = { "inputs": textInput }; | |
// Call the query function and handle the response | |
query(data).then((response) => { | |
console.log(JSON.stringify(response)); | |
const resultDiv = document.getElementById("result"); | |
if (response && Array.isArray(response) && response.length > 0) { | |
const predictions = response[0]; | |
// Display the results for each sentiment label and score | |
resultDiv.innerHTML = predictions.map((prediction) => { | |
return ` | |
<div class="result-item"> | |
<p>Sentiment: ${prediction.label}</p> | |
<p>Confidence Score: ${(prediction.score*100).toFixed(0)}</p> | |
</div> | |
`; | |
}).join(''); | |
// Destroy the existing chart if it exists | |
if (chart) { | |
chart.destroy(); | |
} | |
// Create a new bar chart | |
const labels = predictions.map(prediction => prediction.label); | |
const scores = predictions.map(prediction => prediction.score * 100); // Scale scores to percentage | |
const ctx = chartCanvas.getContext('2d'); | |
chart = new Chart(ctx, { | |
type: 'bar', | |
data: { | |
labels: labels, | |
datasets: [{ | |
label: 'Confidence Scores (%)', | |
data: scores, | |
backgroundColor: 'rgba(255, 0, 0, 0.2)', // Red color with 20% opacity | |
borderColor: 'rgba(255, 0, 0, 1)', // Red color | |
borderWidth: 1 | |
}] | |
}, | |
options: { | |
scales: { | |
y: { | |
beginAtZero: true, | |
max: 100 | |
} | |
} | |
} | |
}); | |
} else { | |
resultDiv.textContent = "Unable to determine sentiment."; | |
} | |
}); | |
} | |
</script> | |
</body> | |
</html> | |