Spaces:
Sleeping
Sleeping
Ahmad-Moiz
commited on
Commit
•
d0b1771
1
Parent(s):
e624046
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,24 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
from pathlib import Path
|
3 |
from typing import Any, Dict, List, Optional
|
|
|
|
|
4 |
from llama_index.llms.base import LLM
|
5 |
from llama_index.llms import OpenAI
|
6 |
-
from llama_index
|
7 |
-
from llama_index.llama_pack.base import BaseLlamaPack
|
8 |
from llama_index.schema import NodeWithScore
|
9 |
from llama_index.response_synthesizers import TreeSummarize
|
10 |
-
from pydantic import BaseModel
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
QUERY_TEMPLATE = """
|
14 |
You are an expert resume reviewer.
|
@@ -21,27 +31,16 @@ Your job is to decide if the candidate passes the resume screen given the job de
|
|
21 |
{criteria_str}
|
22 |
"""
|
23 |
|
24 |
-
|
25 |
class CriteriaDecision(BaseModel):
|
26 |
"""The decision made based on a single criterion"""
|
27 |
-
|
28 |
-
|
29 |
-
reasoning: str = Field(description="The reasoning behind the decision")
|
30 |
-
|
31 |
|
32 |
class ResumeScreenerDecision(BaseModel):
|
33 |
"""The decision made by the resume screener"""
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
)
|
38 |
-
overall_reasoning: str = Field(
|
39 |
-
description="The reasoning behind the overall decision"
|
40 |
-
)
|
41 |
-
overall_decision: bool = Field(
|
42 |
-
description="The overall decision made based on the criteria"
|
43 |
-
)
|
44 |
-
|
45 |
|
46 |
def _format_criteria_str(criteria: List[str]) -> str:
|
47 |
criteria_str = ""
|
@@ -49,16 +48,12 @@ def _format_criteria_str(criteria: List[str]) -> str:
|
|
49 |
criteria_str += f"- {criterion}\n"
|
50 |
return criteria_str
|
51 |
|
52 |
-
|
53 |
class ResumeScreenerPack(BaseLlamaPack):
|
54 |
-
def
|
55 |
-
self,
|
56 |
-
job_description: str,
|
57 |
-
criteria: List[str],
|
58 |
-
llm: Optional[LLM] = None,
|
59 |
) -> None:
|
60 |
self.reader = PDFReader()
|
61 |
-
llm = llm or OpenAI(model="gpt-4")
|
62 |
service_context = ServiceContext.from_defaults(llm=llm)
|
63 |
self.synthesizer = TreeSummarize(
|
64 |
output_cls=ResumeScreenerDecision, service_context=service_context
|
@@ -81,25 +76,44 @@ class ResumeScreenerPack(BaseLlamaPack):
|
|
81 |
)
|
82 |
return output.response
|
83 |
|
84 |
-
|
85 |
def main():
|
86 |
-
st.title("Resume Screener")
|
87 |
|
|
|
88 |
job_description = st.text_area("Job Description")
|
89 |
-
criteria = st.text_area("Screening Criteria (
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from dotenv import load_dotenv
|
3 |
from pathlib import Path
|
4 |
from typing import Any, Dict, List, Optional
|
5 |
+
from llama_index.llama_pack.base import BaseLlamaPack
|
6 |
+
from llama_index.readers import PDFReader
|
7 |
from llama_index.llms.base import LLM
|
8 |
from llama_index.llms import OpenAI
|
9 |
+
from llama_index import ServiceContext
|
|
|
10 |
from llama_index.schema import NodeWithScore
|
11 |
from llama_index.response_synthesizers import TreeSummarize
|
12 |
+
from pydantic import BaseModel
|
13 |
+
import os
|
14 |
+
import pdfplumber
|
15 |
+
import io
|
16 |
+
|
17 |
+
# Load environment variables from .env file
|
18 |
+
load_dotenv()
|
19 |
+
|
20 |
+
# Get OpenAI API key from environment variables
|
21 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
22 |
|
23 |
QUERY_TEMPLATE = """
|
24 |
You are an expert resume reviewer.
|
|
|
31 |
{criteria_str}
|
32 |
"""
|
33 |
|
|
|
34 |
class CriteriaDecision(BaseModel):
|
35 |
"""The decision made based on a single criterion"""
|
36 |
+
decision: bool
|
37 |
+
reasoning: str
|
|
|
|
|
38 |
|
39 |
class ResumeScreenerDecision(BaseModel):
|
40 |
"""The decision made by the resume screener"""
|
41 |
+
criteria_decisions: List[CriteriaDecision]
|
42 |
+
overall_reasoning: str
|
43 |
+
overall_decision: bool
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
def _format_criteria_str(criteria: List[str]) -> str:
|
46 |
criteria_str = ""
|
|
|
48 |
criteria_str += f"- {criterion}\n"
|
49 |
return criteria_str
|
50 |
|
|
|
51 |
class ResumeScreenerPack(BaseLlamaPack):
|
52 |
+
def _init_(
|
53 |
+
self, job_description: str, criteria: List[str], llm: Optional[LLM] = None
|
|
|
|
|
|
|
54 |
) -> None:
|
55 |
self.reader = PDFReader()
|
56 |
+
llm = llm or OpenAI(model="gpt-4", api_key=openai_api_key)
|
57 |
service_context = ServiceContext.from_defaults(llm=llm)
|
58 |
self.synthesizer = TreeSummarize(
|
59 |
output_cls=ResumeScreenerDecision, service_context=service_context
|
|
|
76 |
)
|
77 |
return output.response
|
78 |
|
|
|
79 |
def main():
|
80 |
+
st.title("Resume Screener App")
|
81 |
|
82 |
+
# Sidebar for user input
|
83 |
job_description = st.text_area("Job Description")
|
84 |
+
criteria = st.text_area("Screening Criteria (separate each criterion by a new line)")
|
85 |
+
|
86 |
+
uploaded_file = st.file_uploader("Upload Resume (PDF)", type=["pdf"])
|
87 |
+
|
88 |
+
if st.button("Submit"):
|
89 |
+
if job_description and criteria and uploaded_file:
|
90 |
+
resume_text = extract_text_from_pdf(uploaded_file)
|
91 |
+
|
92 |
+
screener_pack = ResumeScreenerPack(job_description=job_description, criteria=criteria.split("\n"))
|
93 |
+
|
94 |
+
with st.spinner("Analyzing the resume..."):
|
95 |
+
result = screener_pack.run(resume_text)
|
96 |
+
|
97 |
+
st.subheader("Screening Results")
|
98 |
+
st.json(result)
|
99 |
+
|
100 |
+
def extract_text_from_pdf(uploaded_file):
|
101 |
+
if uploaded_file is not None:
|
102 |
+
try:
|
103 |
+
# Read PDF content from BytesIO
|
104 |
+
uploaded_content = io.BytesIO(uploaded_file.read())
|
105 |
+
|
106 |
+
with pdfplumber.open(uploaded_content) as pdf:
|
107 |
+
text = ""
|
108 |
+
for page in pdf.pages:
|
109 |
+
text += page.extract_text()
|
110 |
+
return text
|
111 |
+
except Exception as e:
|
112 |
+
st.error(f"Error extracting text from PDF: {str(e)}")
|
113 |
+
return ""
|
114 |
+
else:
|
115 |
+
st.error("Please upload a PDF file.")
|
116 |
+
return ""
|
117 |
+
|
118 |
+
if _name_ == "_main_":
|
119 |
+
main()
|