Ahmad-Moiz commited on
Commit
2e598b9
·
1 Parent(s): 9a6d2b3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -13,7 +13,7 @@ nltk.download('stopwords')
13
  # Function to read and preprocess the article
14
  def read_article(article):
15
  sentences = nltk.sent_tokenize(article)
16
- sentences = [sentence for sentence in sentences if len sentence > 10] # Filter out very short sentences
17
  return sentences
18
 
19
  # Function to compute sentence similarity based on cosine similarity
@@ -43,7 +43,7 @@ def sentence_similarity(sent1, sent2, stopwords):
43
 
44
  # Function to create a similarity matrix of sentences
45
  def build_similarity_matrix(sentences, stopwords):
46
- similarity_matrix = np.zeros((len(sentences), len(sentences))
47
 
48
  for i in range(len(sentences)):
49
  for j in range(len(sentences)):
@@ -66,7 +66,7 @@ def generate_summary(article, top_n=5):
66
  scores = nx.pagerank(sentence_similarity_graph)
67
 
68
  # Sort the sentences by score
69
- ranked_sentences = sorted(((scores[i], sentence) for i, sentence in enumerate(sentences)), reverse=True)
70
 
71
  # Get the top N sentences as the summary
72
  summary = " ".join([sentence for _, sentence in ranked_sentences[:top_n]])
 
13
  # Function to read and preprocess the article
14
  def read_article(article):
15
  sentences = nltk.sent_tokenize(article)
16
+ sentences = [sentence for sentence in sentences if len(sentence) > 10] # Filter out very short sentences
17
  return sentences
18
 
19
  # Function to compute sentence similarity based on cosine similarity
 
43
 
44
  # Function to create a similarity matrix of sentences
45
  def build_similarity_matrix(sentences, stopwords):
46
+ similarity_matrix = np.zeros((len(sentences), len(sentences)))
47
 
48
  for i in range(len(sentences)):
49
  for j in range(len(sentences)):
 
66
  scores = nx.pagerank(sentence_similarity_graph)
67
 
68
  # Sort the sentences by score
69
+ ranked_sentences = sorted(((scores[i], sentence) for i, sentence in enumerate sentences), reverse=True)
70
 
71
  # Get the top N sentences as the summary
72
  summary = " ".join([sentence for _, sentence in ranked_sentences[:top_n]])