Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
import gradio as gr | |
import torchaudio | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model_id = "distil-whisper/distil-large-v3" | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, torch_dtype=torch_dtype, use_safetensors=True | |
) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
max_new_tokens=128, | |
chunk_length_s=25, | |
batch_size=16, | |
torch_dtype=torch_dtype, | |
device=device, | |
) | |
def speech_to_text(audio_file): | |
try: | |
waveform, sample_rate = torchaudio.load(audio_file) | |
if waveform.size(0) > 1: | |
resample = torchaudio.transforms.Resample(sample_rate, sample_rate) | |
waveform = resample(waveform) | |
waveform_np = waveform.numpy() | |
print("pass to pipe") | |
result = pipe(waveform_np[0]) | |
print("result",result) | |
return result["text"] | |
except Exception as e: | |
print(f"Error: {str(e)}") | |
iface = gr.Interface(fn=speech_to_text, inputs="file", outputs="text", title="Speech-to-Text") | |
if __name__ == "__main__": | |
iface.launch() |