Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
3 |
+
from datasets import load_dataset
|
4 |
+
import faiss
|
5 |
+
import numpy as np
|
6 |
+
import streamlit as st
|
7 |
+
|
8 |
+
# Load the datasets from Hugging Face
|
9 |
+
datasets_dict = {
|
10 |
+
"BillSum": load_dataset("billsum"),
|
11 |
+
"EurLex": load_dataset("eurlex")
|
12 |
+
}
|
13 |
+
|
14 |
+
# Load the T5 model and tokenizer for summarization
|
15 |
+
t5_tokenizer = AutoTokenizer.from_pretrained("t5-base")
|
16 |
+
t5_model = T5ForConditionalGeneration.from_pretrained("t5-base")
|
17 |
+
|
18 |
+
# Initialize variables for the selected dataset
|
19 |
+
selected_dataset = "BillSum"
|
20 |
+
documents = []
|
21 |
+
titles = []
|
22 |
+
|
23 |
+
# Prepare the dataset for retrieval based on user selection
|
24 |
+
def prepare_dataset(dataset_name):
|
25 |
+
global documents, titles
|
26 |
+
dataset = datasets_dict[dataset_name]
|
27 |
+
documents = dataset['train']['text'][:100] # Use a subset for demo purposes
|
28 |
+
titles = dataset['train']['title'][:100] # Get corresponding titles
|
29 |
+
|
30 |
+
prepare_dataset(selected_dataset)
|
31 |
+
|
32 |
+
# Function to embed text for retrieval
|
33 |
+
def embed_text(text):
|
34 |
+
input_ids = t5_tokenizer.encode(text, return_tensors="pt", max_length=512, truncation=True)
|
35 |
+
with torch.no_grad():
|
36 |
+
outputs = t5_model.encoder(input_ids)
|
37 |
+
return outputs.last_hidden_state.mean(dim=1).numpy()
|
38 |
+
|
39 |
+
# Create embeddings for the documents
|
40 |
+
doc_embeddings = np.vstack([embed_text(doc) for doc in documents]).astype(np.float32)
|
41 |
+
|
42 |
+
# Initialize FAISS index
|
43 |
+
index = faiss.IndexFlatL2(doc_embeddings.shape[1])
|
44 |
+
index.add(doc_embeddings)
|
45 |
+
|
46 |
+
# Define functions for retrieving and summarizing cases
|
47 |
+
def retrieve_cases(query, top_k=3):
|
48 |
+
query_embedding = embed_text(query)
|
49 |
+
distances, indices = index.search(query_embedding, top_k)
|
50 |
+
return [(documents[i], titles[i]) for i in indices[0]] # Return documents and their titles
|
51 |
+
|
52 |
+
def summarize_cases(cases):
|
53 |
+
summaries = []
|
54 |
+
for case, _ in cases:
|
55 |
+
input_ids = t5_tokenizer.encode(case, return_tensors="pt", max_length=512, truncation=True)
|
56 |
+
outputs = t5_model.generate(input_ids, max_length=60, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True)
|
57 |
+
summary = t5_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
58 |
+
summaries.append(summary)
|
59 |
+
return summaries
|
60 |
+
|
61 |
+
# Step 3: Streamlit App Code
|
62 |
+
st.title("Legal Case Summarizer")
|
63 |
+
st.write("Select a dataset and enter keywords to retrieve and summarize relevant cases.")
|
64 |
+
|
65 |
+
# Dropdown for selecting dataset
|
66 |
+
dataset_options = list(datasets_dict.keys())
|
67 |
+
selected_dataset = st.selectbox("Choose a dataset:", dataset_options)
|
68 |
+
|
69 |
+
# Prepare the selected dataset
|
70 |
+
prepare_dataset(selected_dataset)
|
71 |
+
|
72 |
+
query = st.text_input("Enter search keywords:", "healthcare")
|
73 |
+
|
74 |
+
if st.button("Retrieve and Summarize Cases"):
|
75 |
+
with st.spinner("Retrieving and summarizing cases..."):
|
76 |
+
cases = retrieve_cases(query)
|
77 |
+
if cases:
|
78 |
+
summaries = summarize_cases(cases)
|
79 |
+
for i, (case, title) in enumerate(cases):
|
80 |
+
summary = summaries[i]
|
81 |
+
st.write(f"### Case {i + 1}")
|
82 |
+
st.write(f"**Title:** {title}")
|
83 |
+
st.write(f"**Case Text:** {case}")
|
84 |
+
st.write(f"**Summary:** {summary}")
|
85 |
+
else:
|
86 |
+
st.write("No cases found for the given query.")
|
87 |
+
|
88 |
+
st.write("Using T5 for summarization and retrieval.")
|
89 |
+
import torch
|
90 |
+
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
91 |
+
from datasets import load_dataset
|
92 |
+
import faiss
|
93 |
+
import numpy as np
|
94 |
+
import streamlit as st
|
95 |
+
|
96 |
+
# Load the datasets from Hugging Face
|
97 |
+
datasets_dict = {
|
98 |
+
"BillSum": load_dataset("billsum"),
|
99 |
+
"EurLex": load_dataset("eurlex")
|
100 |
+
}
|
101 |
+
|
102 |
+
# Load the T5 model and tokenizer for summarization
|
103 |
+
t5_tokenizer = AutoTokenizer.from_pretrained("t5-base")
|
104 |
+
t5_model = T5ForConditionalGeneration.from_pretrained("t5-base")
|
105 |
+
|
106 |
+
# Initialize variables for the selected dataset
|
107 |
+
selected_dataset = "BillSum"
|
108 |
+
documents = []
|
109 |
+
titles = []
|
110 |
+
|
111 |
+
# Prepare the dataset for retrieval based on user selection
|
112 |
+
def prepare_dataset(dataset_name):
|
113 |
+
global documents, titles
|
114 |
+
dataset = datasets_dict[dataset_name]
|
115 |
+
documents = dataset['train']['text'][:100] # Use a subset for demo purposes
|
116 |
+
titles = dataset['train']['title'][:100] # Get corresponding titles
|
117 |
+
|
118 |
+
prepare_dataset(selected_dataset)
|
119 |
+
|
120 |
+
# Function to embed text for retrieval
|
121 |
+
def embed_text(text):
|
122 |
+
input_ids = t5_tokenizer.encode(text, return_tensors="pt", max_length=512, truncation=True)
|
123 |
+
with torch.no_grad():
|
124 |
+
outputs = t5_model.encoder(input_ids)
|
125 |
+
return outputs.last_hidden_state.mean(dim=1).numpy()
|
126 |
+
|
127 |
+
# Create embeddings for the documents
|
128 |
+
doc_embeddings = np.vstack([embed_text(doc) for doc in documents]).astype(np.float32)
|
129 |
+
|
130 |
+
# Initialize FAISS index
|
131 |
+
index = faiss.IndexFlatL2(doc_embeddings.shape[1])
|
132 |
+
index.add(doc_embeddings)
|
133 |
+
|
134 |
+
# Define functions for retrieving and summarizing cases
|
135 |
+
def retrieve_cases(query, top_k=3):
|
136 |
+
query_embedding = embed_text(query)
|
137 |
+
distances, indices = index.search(query_embedding, top_k)
|
138 |
+
return [(documents[i], titles[i]) for i in indices[0]] # Return documents and their titles
|
139 |
+
|
140 |
+
def summarize_cases(cases):
|
141 |
+
summaries = []
|
142 |
+
for case, _ in cases:
|
143 |
+
input_ids = t5_tokenizer.encode(case, return_tensors="pt", max_length=512, truncation=True)
|
144 |
+
outputs = t5_model.generate(input_ids, max_length=60, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True)
|
145 |
+
summary = t5_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
146 |
+
summaries.append(summary)
|
147 |
+
return summaries
|
148 |
+
|
149 |
+
# Step 3: Streamlit App Code
|
150 |
+
st.title("Legal Case Summarizer")
|
151 |
+
st.write("Select a dataset and enter keywords to retrieve and summarize relevant cases.")
|
152 |
+
|
153 |
+
# Dropdown for selecting dataset
|
154 |
+
dataset_options = list(datasets_dict.keys())
|
155 |
+
selected_dataset = st.selectbox("Choose a dataset:", dataset_options)
|
156 |
+
|
157 |
+
# Prepare the selected dataset
|
158 |
+
prepare_dataset(selected_dataset)
|
159 |
+
|
160 |
+
query = st.text_input("Enter search keywords:", "healthcare")
|
161 |
+
|
162 |
+
if st.button("Retrieve and Summarize Cases"):
|
163 |
+
with st.spinner("Retrieving and summarizing cases..."):
|
164 |
+
cases = retrieve_cases(query)
|
165 |
+
if cases:
|
166 |
+
summaries = summarize_cases(cases)
|
167 |
+
for i, (case, title) in enumerate(cases):
|
168 |
+
summary = summaries[i]
|
169 |
+
st.write(f"### Case {i + 1}")
|
170 |
+
st.write(f"**Title:** {title}")
|
171 |
+
st.write(f"**Case Text:** {case}")
|
172 |
+
st.write(f"**Summary:** {summary}")
|
173 |
+
else:
|
174 |
+
st.write("No cases found for the given query.")
|
175 |
+
|
176 |
+
st.write("Using T5 for summarization and retrieval.")
|