Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,30 +5,19 @@ import gradio as gr
|
|
5 |
import io
|
6 |
|
7 |
# Load the model
|
8 |
-
model_path = '
|
9 |
model = tf.keras.models.load_model(model_path)
|
10 |
-
|
11 |
-
# Define preprocessing function
|
12 |
-
def preprocess_image(image):
|
13 |
-
# Resize the image to match input size
|
14 |
-
image = image.resize((256, 256))
|
15 |
-
# Convert image to array and preprocess input
|
16 |
-
img_array = np.array(image) / 255.0
|
17 |
-
# Add batch dimension
|
18 |
-
img_array = np.expand_dims(img_array, axis=0)
|
19 |
-
return img_array
|
20 |
-
|
21 |
# Define prediction function
|
22 |
def predict_image(image):
|
23 |
# Save the image to a file-like object
|
24 |
image_bytes = io.BytesIO()
|
25 |
image.save(image_bytes, format="JPEG") # Change "JPG" to "JPEG"
|
26 |
image_bytes.seek(0) # Reset file pointer to start
|
27 |
-
|
28 |
# Load the image from the file-like object
|
29 |
image = tf.keras.preprocessing.image.load_img(image_bytes, target_size=(256, 256), color_mode="rgb") # Specify color_mode="rgb"
|
30 |
-
|
31 |
-
img_array =
|
|
|
32 |
outputs = model.predict(img_array)
|
33 |
predictions = tf.nn.softmax(outputs.logits, axis=-1)
|
34 |
predicted_class_index = np.argmax(predictions)
|
|
|
5 |
import io
|
6 |
|
7 |
# Load the model
|
8 |
+
model_path = 'final_teath_classifier.h5'
|
9 |
model = tf.keras.models.load_model(model_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# Define prediction function
|
11 |
def predict_image(image):
|
12 |
# Save the image to a file-like object
|
13 |
image_bytes = io.BytesIO()
|
14 |
image.save(image_bytes, format="JPEG") # Change "JPG" to "JPEG"
|
15 |
image_bytes.seek(0) # Reset file pointer to start
|
|
|
16 |
# Load the image from the file-like object
|
17 |
image = tf.keras.preprocessing.image.load_img(image_bytes, target_size=(256, 256), color_mode="rgb") # Specify color_mode="rgb"
|
18 |
+
#image = image.resize((256, 256))
|
19 |
+
img_array = np.array(image) / 255.0
|
20 |
+
img_array = np.expand_dims(img_array, axis=0)
|
21 |
outputs = model.predict(img_array)
|
22 |
predictions = tf.nn.softmax(outputs.logits, axis=-1)
|
23 |
predicted_class_index = np.argmax(predictions)
|