Spaces:
Configuration error
Configuration error
File size: 9,964 Bytes
45e92bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import glob
import json
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from typing import Dict, List, Optional, Union, Literal, Tuple
from types import MethodType
import torch
import transformers
from accelerate.utils import DistributedType
from deepspeed import zero
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
from transformers import AutoModel, AutoTokenizer
from transformers.integrations import deepspeed
from transformers import AutoModel, AutoTokenizer
from dataset import SupervisedDataset, data_collator
from trainer import CPMTrainer
from peft import LoraConfig, get_peft_model
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="openbmb/MiniCPM-V-2")
@dataclass
class DataArguments:
data_path: str = field(
default=None, metadata={"help": "Path to the training data."}
)
eval_data_path: str = field(
default=None, metadata={"help": "Path to the evaluation data."}
)
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=2048,
metadata={
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
tune_vision: Optional[bool] = field(default=True)
tune_llm: Optional[bool] = field(default=False)
llm_type: str = field(default="minicpm")
use_lora: Optional[bool] = field(default=False)
@dataclass
class LoraArguments:
lora_r: int = 64
lora_alpha: int = 64
lora_dropout: float = 0.05
lora_target_modules: str = r"llm\..*layers\.\d+\.self_attn\.(q_proj|k_proj|v_proj)"
lora_weight_path: str = ""
lora_bias: str = "none"
q_lora: bool = False
lora_modules_to_save: str = ""
lora_layer_replication: Optional[List[Tuple[int, int]]] = None
lora_layers_to_transform: Optional[List[int]] = None
lora_layers_pattern: Optional[str] = None
def maybe_zero_3(param):
if hasattr(param, "ds_id"):
assert param.ds_status == ZeroParamStatus.NOT_AVAILABLE
with zero.GatheredParameters([param]):
param = param.data.detach().cpu().clone()
else:
param = param.detach().cpu().clone()
return param
# Borrowed from peft.utils.get_peft_model_state_dict
def get_peft_state_maybe_zero_3(named_params, bias):
if bias == "none":
to_return = {k: t for k, t in named_params if "lora_" in k}
elif bias == "all":
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
elif bias == "lora_only":
to_return = {}
maybe_lora_bias = {}
lora_bias_names = set()
for k, t in named_params:
if "lora_" in k:
to_return[k] = t
bias_name = k.split("lora_")[0] + "bias"
lora_bias_names.add(bias_name)
elif "bias" in k:
maybe_lora_bias[k] = t
for k, t in maybe_lora_bias:
if bias_name in lora_bias_names:
to_return[bias_name] = t
else:
raise NotImplementedError
to_return = {k: maybe_zero_3(v) for k, v in to_return.items()}
return to_return
local_rank = None
def rank0_print(*args):
if local_rank == 0:
print(*args)
def safe_save_model_for_hf_trainer(trainer, output_dir: str, bias="none"):
"""Collects the state dict and dump to disk."""
# check if zero3 mode enabled
if deepspeed.is_deepspeed_zero3_enabled():
state_dict = trainer.model_wrapped._zero3_consolidated_16bit_state_dict()
else:
if trainer.args.use_lora:
state_dict = get_peft_state_maybe_zero_3(
trainer.model.named_parameters(), bias
)
else:
state_dict = trainer.model.state_dict()
if trainer.args.should_save and trainer.args.local_rank == 0:
trainer._save(output_dir, state_dict=state_dict)
def make_supervised_data_module(
tokenizer: transformers.PreTrainedTokenizer,
data_args,
transform,
data_collator=None,
llm_type="minicpm",
slice_config=None,
patch_size=14,
query_nums=64,
batch_vision=False,
max_length=2048,
) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
dataset_cls = SupervisedDataset
rank0_print("Loading data...")
train_json = json.load(open(data_args.data_path, "r"))
train_dataset = dataset_cls(
train_json,
transform,
tokenizer,
slice_config=slice_config,
llm_type=llm_type,
patch_size=patch_size,
query_nums=query_nums,
batch_vision=batch_vision,
)
if data_args.eval_data_path:
eval_json = json.load(open(data_args.eval_data_path, "r"))
eval_dataset = dataset_cls(
eval_json,
transform,
tokenizer,
slice_config=slice_config,
llm_type=llm_type,
patch_size=patch_size,
query_nums=query_nums,
batch_vision=batch_vision,
)
else:
eval_dataset = None
return dict(
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator= partial(data_collator, max_length=max_length),
)
def get_parameter_number(model):
trainable_params, all_param = 0, 0
for param in model.parameters():
num_params = param.numel()
# if using DS Zero 3 and the weights are initialized empty
if num_params == 0 and hasattr(param, "ds_numel"):
num_params = param.ds_numel
all_param += num_params
if param.requires_grad:
trainable_params += num_params
return {'Total': all_param, 'Trainable': trainable_params}
local_rank = 0
def train():
global local_rank
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments, LoraArguments)
)
(
model_args,
data_args,
training_args,
lora_args,
) = parser.parse_args_into_dataclasses()
if getattr(training_args, "deepspeed", None) :
training_args.distributed_state.distributed_type = DistributedType.DEEPSPEED
compute_dtype = (
torch.float16
if training_args.fp16
else (torch.bfloat16 if training_args.bf16 else torch.float32)
)
local_rank = training_args.local_rank
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} if ddp else None
model = AutoModel.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=True,
torch_dtype=compute_dtype,
device_map=device_map,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, trust_remote_code=True
)
if not training_args.tune_vision:
model.vpm.requires_grad_(False)
if not training_args.tune_llm:
model.llm.requires_grad_(False)
if training_args.use_lora:
if training_args.use_lora and training_args.tune_llm:
raise ValueError("The model cannot simultaneously adjust LLM parameters and apply LoRA.")
rank0_print("Currently using LoRA for fine-tuning the MiniCPM-V model.")
for name, param in model.llm.named_parameters():
param.requires_grad = False
lora_config = LoraConfig(
r=lora_args.lora_r,
lora_alpha=lora_args.lora_alpha,
target_modules=lora_args.lora_target_modules,
lora_dropout=lora_args.lora_dropout,
bias=lora_args.lora_bias,
layers_to_transform=lora_args.lora_layers_to_transform,
task_type="CAUSAL_LM",
)
if training_args.gradient_checkpointing:
def get_input_embeddings(self):
return self.llm.get_input_embeddings()
model.get_input_embeddings = MethodType(get_input_embeddings, model)
model = get_peft_model(model, lora_config)
model.base_model.llm.model.embed_tokens.weight.requires_grad_(True)
if training_args.gradient_checkpointing:
model.enable_input_require_grads()
rank0_print(get_parameter_number(model))
llm_type = training_args.llm_type
if llm_type == "llama3":
tokenizer.chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}"
rank0_print(f'llm_type={llm_type}')
# Load data
if hasattr(model.config, "slice_config"):
slice_config = model.config.slice_config.to_dict()
else:
slice_config = model.config.to_dict()
if hasattr(model.config, "batch_vision_input"):
batch_vision = model.config.batch_vision_input
else:
batch_vision = False
data_module = make_supervised_data_module(
tokenizer=tokenizer,
data_args=data_args,
transform=model.transform,
data_collator=data_collator,
slice_config=slice_config,
llm_type=llm_type,
patch_size=model.config.patch_size,
query_nums=model.config.query_num,
batch_vision=batch_vision,
max_length=training_args.model_max_length,
)
trainer = CPMTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
**data_module,
)
trainer.train()
trainer.save_state()
safe_save_model_for_hf_trainer(
trainer=trainer,
output_dir=training_args.output_dir,
bias=lora_args.lora_bias)
if __name__ == "__main__":
train()
|