AhmedSSabir
commited on
Commit
•
37b9ac3
1
Parent(s):
41816f7
Update app.py
Browse files
app.py
CHANGED
@@ -8,23 +8,88 @@ import os
|
|
8 |
import gradio as gr
|
9 |
import requests
|
10 |
|
11 |
-
url = "https://github.com/simonepri/lm-scorer/tree/master/lm_scorer/models"
|
12 |
-
resp = requests.get(url)
|
13 |
|
14 |
|
15 |
#from sentence_transformers import SentenceTransformer, util
|
16 |
#from sklearn.metrics.pairwise import cosine_similarity
|
17 |
-
from lm_scorer.models.auto import AutoLMScorer as LMScorer
|
18 |
#from sentence_transformers import SentenceTransformer, util
|
19 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
20 |
|
21 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
22 |
model = gr.interface.huggingface.load('sentence-transformers/stsb-distilbert-base')
|
23 |
|
24 |
#SentenceTransformer('stsb-distilbert-base', device=device)
|
25 |
|
26 |
-
batch_size = 1
|
27 |
-
scorer = LMScorer.from_pretrained('gpt2' , device=device, batch_size=batch_size)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
|
30 |
def cos_sim(a, b):
|
@@ -45,7 +110,8 @@ def Visual_re_ranker(caption, visual_context_label, visual_context_prob):
|
|
45 |
sim = str(sim)[1:-1]
|
46 |
sim = str(sim)[1:-1]
|
47 |
|
48 |
-
LM
|
|
|
49 |
score = pow(float(LM),pow((1-float(sim))/(1+ float(sim)),1-float(visual_context_prob)))
|
50 |
|
51 |
|
|
|
8 |
import gradio as gr
|
9 |
import requests
|
10 |
|
11 |
+
#url = "https://github.com/simonepri/lm-scorer/tree/master/lm_scorer/models"
|
12 |
+
#resp = requests.get(url)
|
13 |
|
14 |
|
15 |
#from sentence_transformers import SentenceTransformer, util
|
16 |
#from sklearn.metrics.pairwise import cosine_similarity
|
17 |
+
#from lm_scorer.models.auto import AutoLMScorer as LMScorer
|
18 |
#from sentence_transformers import SentenceTransformer, util
|
19 |
+
#from sklearn.metrics.pairwise import cosine_similarity
|
20 |
|
21 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
22 |
model = gr.interface.huggingface.load('sentence-transformers/stsb-distilbert-base')
|
23 |
|
24 |
#SentenceTransformer('stsb-distilbert-base', device=device)
|
25 |
|
26 |
+
#batch_size = 1
|
27 |
+
#scorer = LMScorer.from_pretrained('gpt2' , device=device, batch_size=batch_size)
|
28 |
+
|
29 |
+
import torch
|
30 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
31 |
+
import NumPy as np
|
32 |
+
import re
|
33 |
+
|
34 |
+
def Sort_Tuple(tup):
|
35 |
+
|
36 |
+
# (Sorts in descending order)
|
37 |
+
tup.sort(key = lambda x: x[1])
|
38 |
+
return tup[::-1]
|
39 |
+
|
40 |
+
|
41 |
+
def softmax(x):
|
42 |
+
exps = np.exp(x)
|
43 |
+
return np.divide(exps, np.sum(exps))
|
44 |
+
|
45 |
+
# Load pre-trained model
|
46 |
+
model = GPT2LMHeadModel.from_pretrained('distilgpt2', output_hidden_states = True, output_attentions = True)
|
47 |
+
model.eval()
|
48 |
+
tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
49 |
+
|
50 |
+
|
51 |
+
def cloze_prob(text):
|
52 |
+
|
53 |
+
whole_text_encoding = tokenizer.encode(text)
|
54 |
+
# Parse out the stem of the whole sentence (i.e., the part leading up to but not including the critical word)
|
55 |
+
text_list = text.split()
|
56 |
+
stem = ' '.join(text_list[:-1])
|
57 |
+
stem_encoding = tokenizer.encode(stem)
|
58 |
+
# cw_encoding is just the difference between whole_text_encoding and stem_encoding
|
59 |
+
# note: this might not correspond exactly to the word itself
|
60 |
+
cw_encoding = whole_text_encoding[len(stem_encoding):]
|
61 |
+
# Run the entire sentence through the model. Then go "back in time" to look at what the model predicted for each token, starting at the stem.
|
62 |
+
# Put the whole text encoding into a tensor, and get the model's comprehensive output
|
63 |
+
tokens_tensor = torch.tensor([whole_text_encoding])
|
64 |
+
|
65 |
+
with torch.no_grad():
|
66 |
+
outputs = model(tokens_tensor)
|
67 |
+
predictions = outputs[0]
|
68 |
+
|
69 |
+
logprobs = []
|
70 |
+
# start at the stem and get downstream probabilities incrementally from the model(see above)
|
71 |
+
start = -1-len(cw_encoding)
|
72 |
+
for j in range(start,-1,1):
|
73 |
+
raw_output = []
|
74 |
+
for i in predictions[-1][j]:
|
75 |
+
raw_output.append(i.item())
|
76 |
+
|
77 |
+
logprobs.append(np.log(softmax(raw_output)))
|
78 |
+
|
79 |
+
# if the critical word is three tokens long, the raw_probabilities should look something like this:
|
80 |
+
# [ [0.412, 0.001, ... ] ,[0.213, 0.004, ...], [0.002,0.001, 0.93 ...]]
|
81 |
+
# Then for the i'th token we want to find its associated probability
|
82 |
+
# this is just: raw_probabilities[i][token_index]
|
83 |
+
conditional_probs = []
|
84 |
+
for cw,prob in zip(cw_encoding,logprobs):
|
85 |
+
conditional_probs.append(prob[cw])
|
86 |
+
# now that you have all the relevant probabilities, return their product.
|
87 |
+
# This is the probability of the critical word given the context before it.
|
88 |
+
|
89 |
+
return np.exp(np.sum(conditional_probs))
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
|
94 |
|
95 |
def cos_sim(a, b):
|
|
|
110 |
sim = str(sim)[1:-1]
|
111 |
sim = str(sim)[1:-1]
|
112 |
|
113 |
+
LM = cloze_prob(caption)
|
114 |
+
#LM = scorer.sentence_score(caption, reduce="mean")
|
115 |
score = pow(float(LM),pow((1-float(sim))/(1+ float(sim)),1-float(visual_context_prob)))
|
116 |
|
117 |
|