Alibrown's picture
Rename app.py to _zip_app.py
14a41b1 verified
raw
history blame
6.03 kB
import streamlit as st
import google.generativeai as genai
from PIL import Image
import io
import base64
import pandas as pd
import zipfile
import PyPDF2
st.set_page_config(page_title="Gemini AI Chat", layout="wide")
st.title("🤖 Gemini AI Chat Interface")
st.markdown("""
**Welcome to the Gemini AI Chat Interface!**
Chat seamlessly with Google's advanced Gemini AI models, supporting multiple input types.
🔗 [GitHub Profile](https://github.com/volkansah) |
📂 [Project Repository](https://github.com/volkansah/gemini-ai-chat) |
💬 [Soon](https://aicodecraft.io)
""")
# Session State Management
if "messages" not in st.session_state:
st.session_state.messages = []
if "uploaded_content" not in st.session_state:
st.session_state.uploaded_content = None
# File Processing Functions
def encode_image(image):
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
def process_file(uploaded_file):
file_type = uploaded_file.name.split('.')[-1].lower()
if file_type in ["jpg", "jpeg", "png"]:
return {"type": "image", "content": Image.open(uploaded_file).convert('RGB')}
code_extensions = ["html", "css", "php", "js", "py", "java", "c", "cpp"]
if file_type in ["txt"] + code_extensions:
return {"type": "text", "content": uploaded_file.read().decode("utf-8")}
if file_type in ["csv", "xlsx"]:
df = pd.read_csv(uploaded_file) if file_type == "csv" else pd.read_excel(uploaded_file)
return {"type": "text", "content": df.to_string()}
if file_type == "pdf":
reader = PyPDF2.PdfReader(uploaded_file)
return {"type": "text", "content": "".join(page.extract_text() for page in reader.pages if page.extract_text())}
if file_type == "zip":
with zipfile.ZipFile(uploaded_file) as z:
# Fix: Define newline character outside f-string
newline = "\n"
return {"type": "text", "content": f"ZIP Contents:{newline}{newline.join(z.namelist())}"}
return {"type": "error", "content": "Unsupported file format"}
# Sidebar Configuration
with st.sidebar:
api_key = st.text_input("Google AI API Key", type="password")
model = st.selectbox("Model", [
"gemini-1.5-flash",
"gemini-1.5-pro",
"gemini-1.5-flash-8B",
"gemini-1.5-pro-vision-latest",
"gemini-1.0-pro",
"gemini-1.0-pro-vision-latest",
"gemini-2.0-pro-exp-02-05",
"gemini-2.0-flash-lite",
"gemini-2.0-flash-exp-image-generation",
"gemini-2.0-flash",
"gemini-2.0-flash-thinking-exp-01-21"
])
temperature = st.slider("Temperature", 0.0, 1.0, 0.7)
max_tokens = st.slider("Max Tokens", 1, 2048, 1000)
# File Upload Section
uploaded_file = st.file_uploader("Upload File (Image/Text/PDF/ZIP)",
type=["jpg", "jpeg", "png", "txt", "pdf", "zip",
"csv", "xlsx", "html", "css", "php", "js", "py"])
if uploaded_file:
processed = process_file(uploaded_file)
st.session_state.uploaded_content = processed
if processed["type"] == "image":
st.image(processed["content"], caption="Uploaded Image", use_container_width=True)
elif processed["type"] == "text":
st.text_area("File Preview", processed["content"], height=200)
# Chat History Display
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat Input Processing
if prompt := st.chat_input("Your message..."):
if not api_key:
st.warning("API Key benötigt!")
st.stop()
try:
# Configure Gemini
genai.configure(api_key=api_key)
model_instance = genai.GenerativeModel(model)
# Build content payload
content = []
# Add text input
content.append({"text": prompt})
# Add file content
if st.session_state.uploaded_content:
if st.session_state.uploaded_content["type"] == "image":
content.append({
"inline_data": {
"mime_type": "image/jpeg",
"data": encode_image(st.session_state.uploaded_content["content"])
}
})
elif st.session_state.uploaded_content["type"] == "text":
content[0]["text"] += f"\n\n[File Content]\n{st.session_state.uploaded_content['content']}"
# Add to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Generate response
response = model_instance.generate_content(
content,
generation_config=genai.types.GenerationConfig(
temperature=temperature,
max_output_tokens=max_tokens
)
)
# Display response
with st.chat_message("assistant"):
st.markdown(response.text)
st.session_state.messages.append({"role": "assistant", "content": response.text})
except Exception as e:
st.error(f"API Error: {str(e)}")
if "vision" not in model and st.session_state.uploaded_content["type"] == "image":
st.error("Für Bilder einen Vision-fähigen Modell auswählen!")
# Instructions in the sidebar
with st.sidebar:
st.markdown("""
## 📝 Instructions:
1. Enter your Google AI API key
2. Select a model (use vision models for image analysis)
3. Adjust temperature and max tokens if needed
4. Optional: Set a system prompt
5. Upload an image (optional)
6. Type your message and press Enter
### About
🔗 [GitHub Profile](https://github.com/volkansah) |
📂 [Project Repository](https://github.com/volkansah/gemini-ai-chat) |
💬 [Soon](https://aicodecraft.io)
""")