Spaces:
Runtime error
Runtime error
Initial commit
Browse files- .gitignore +8 -0
- README.md +1 -1
- audio.py +201 -0
- main.py +31 -0
- model.py +39 -0
- requirements.txt +12 -0
.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
.idea/
|
3 |
+
__pycache__/
|
4 |
+
|
5 |
+
assets
|
6 |
+
tts_model
|
7 |
+
|
8 |
+
output.wav
|
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: π₯
|
|
4 |
colorFrom: green
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
4 |
colorFrom: green
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.2.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
audio.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import os
|
3 |
+
import nltk
|
4 |
+
import torch
|
5 |
+
import pickle
|
6 |
+
import torchaudio
|
7 |
+
import numpy as np
|
8 |
+
import gradio as gr
|
9 |
+
from google.cloud import storage
|
10 |
+
from TTS.tts.models.xtts import Xtts
|
11 |
+
from nltk.tokenize import sent_tokenize
|
12 |
+
from huggingface_hub import hf_hub_download
|
13 |
+
from TTS.tts.configs.xtts_config import XttsConfig
|
14 |
+
|
15 |
+
|
16 |
+
def _download_starting_files() -> None:
|
17 |
+
"""
|
18 |
+
Downloads the embeddings from a bucket
|
19 |
+
"""
|
20 |
+
os.makedirs('assets', exist_ok=True)
|
21 |
+
|
22 |
+
# Download credentials file
|
23 |
+
hf_hub_download(
|
24 |
+
repo_id=os.environ.get('DATA'), repo_type='dataset', filename="credentials.json",
|
25 |
+
token=os.environ.get('HUB_TOKEN'), local_dir="assets"
|
26 |
+
)
|
27 |
+
|
28 |
+
# Initialise a client
|
29 |
+
credentials = os.getenv('GOOGLE_APPLICATION_CREDENTIALS')
|
30 |
+
storage_client = storage.Client.from_service_account_json(credentials)
|
31 |
+
bucket = storage_client.get_bucket('embeddings-bella')
|
32 |
+
|
33 |
+
# Get both embeddings
|
34 |
+
blob = bucket.blob("gpt_cond_latent.npy")
|
35 |
+
blob.download_to_filename('assets/gpt_cond_latent.npy')
|
36 |
+
blob = bucket.blob("speaker_embedding.npy")
|
37 |
+
blob.download_to_filename('assets/speaker_embedding.npy')
|
38 |
+
|
39 |
+
|
40 |
+
def _load_array(filename):
|
41 |
+
"""
|
42 |
+
Opens a file a returns it, used with numpy files
|
43 |
+
"""
|
44 |
+
with open(filename, 'rb') as f:
|
45 |
+
return pickle.load(f)
|
46 |
+
|
47 |
+
|
48 |
+
# Get embeddings
|
49 |
+
_download_starting_files()
|
50 |
+
os.environ['COQUI_TOS_AGREED'] = '1'
|
51 |
+
|
52 |
+
# Used to generate audio based on a sample
|
53 |
+
nltk.download('punkt')
|
54 |
+
model_path = os.path.join("tts_model")
|
55 |
+
|
56 |
+
config = XttsConfig()
|
57 |
+
config.load_json(os.path.join(model_path, "config.json"))
|
58 |
+
|
59 |
+
model = Xtts.init_from_config(config)
|
60 |
+
model.load_checkpoint(
|
61 |
+
config,
|
62 |
+
checkpoint_path=os.path.join(model_path, "model.pth"),
|
63 |
+
vocab_path=os.path.join(model_path, "vocab.json"),
|
64 |
+
eval=True,
|
65 |
+
use_deepspeed=True,
|
66 |
+
)
|
67 |
+
|
68 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
69 |
+
model.to(device)
|
70 |
+
|
71 |
+
# Speaker latent
|
72 |
+
path_latents = 'assets/gpt_cond_latent.npy'
|
73 |
+
gpt_cond_latent = _load_array(path_latents)
|
74 |
+
|
75 |
+
# Speaker embedding
|
76 |
+
path_embedding = 'assets/speaker_embedding.npy'
|
77 |
+
speaker_embedding = _load_array(path_embedding)
|
78 |
+
|
79 |
+
|
80 |
+
def get_audio(text: str, language: str = 'es') -> gr.Audio:
|
81 |
+
"""
|
82 |
+
Returns a link from a bucket in GCP that contains the generated audio given a text and language and the
|
83 |
+
name of such audio
|
84 |
+
:param text: used to generate the audio
|
85 |
+
:param language: 'es', 'en' or 'pt'
|
86 |
+
:return link_audio and name_audio
|
87 |
+
"""
|
88 |
+
# Creates an audio with the answer and saves it as output.wav
|
89 |
+
_save_audio(text, language)
|
90 |
+
|
91 |
+
return gr.Audio(value='output.wav', interactive=False, visible=True)
|
92 |
+
|
93 |
+
|
94 |
+
def _save_audio(answer: str, language: str) -> None:
|
95 |
+
"""
|
96 |
+
Splits the answer into sentences, clean and creates an audio for each one, then concatenates
|
97 |
+
all the audios and saves them into a file (output.wav)
|
98 |
+
"""
|
99 |
+
# Split the answer into sentences and clean it
|
100 |
+
sentences = _get_clean_answer(answer, language)
|
101 |
+
|
102 |
+
# Get the voice of each sentence
|
103 |
+
audio_segments = []
|
104 |
+
for sentence in sentences:
|
105 |
+
audio_stream = _get_voice(sentence, language)
|
106 |
+
audio_stream = torch.tensor(audio_stream)
|
107 |
+
audio_segments.append(audio_stream)
|
108 |
+
|
109 |
+
# Concatenate and save all audio segments
|
110 |
+
concatenated_audio = torch.cat(audio_segments, dim=0)
|
111 |
+
torchaudio.save('output.wav', concatenated_audio.unsqueeze(0), 24000)
|
112 |
+
|
113 |
+
|
114 |
+
def _get_voice(sentence: str, language: str) -> np.ndarray:
|
115 |
+
"""
|
116 |
+
Returns a numpy array with a wav of an audio with the given sentence and language
|
117 |
+
"""
|
118 |
+
out = model.inference(
|
119 |
+
sentence,
|
120 |
+
language=language,
|
121 |
+
gpt_cond_latent=gpt_cond_latent,
|
122 |
+
speaker_embedding=speaker_embedding,
|
123 |
+
temperature=0.1
|
124 |
+
)
|
125 |
+
return out['wav']
|
126 |
+
|
127 |
+
|
128 |
+
def _get_clean_answer(answer: str, language: str) -> list[str]:
|
129 |
+
"""
|
130 |
+
Returns a list of sentences of the answer. It also removes links
|
131 |
+
"""
|
132 |
+
# Remove the links in the audio and add another sentence
|
133 |
+
if language == 'en':
|
134 |
+
clean_answer = re.sub(r'http[s]?://\S+', 'the following link', answer)
|
135 |
+
max_characters = 250
|
136 |
+
elif language == 'es':
|
137 |
+
clean_answer = re.sub(r'http[s]?://\S+', 'el siguiente link', answer)
|
138 |
+
max_characters = 239
|
139 |
+
else:
|
140 |
+
clean_answer = re.sub(r'http[s]?://\S+', 'o seguinte link', answer)
|
141 |
+
max_characters = 203
|
142 |
+
|
143 |
+
# Change the name from Bella to Bela
|
144 |
+
clean_answer = clean_answer.replace('Bella', 'Bela')
|
145 |
+
|
146 |
+
# Remove Florida and zipcode
|
147 |
+
clean_answer = re.sub(r', FL \d+', "", clean_answer)
|
148 |
+
|
149 |
+
# Split the answer into sentences with nltk and make sure they are shorter than the maximum possible
|
150 |
+
# characters
|
151 |
+
split_sentences = sent_tokenize(clean_answer)
|
152 |
+
sentences = []
|
153 |
+
for sentence in split_sentences:
|
154 |
+
if len(sentence) > max_characters:
|
155 |
+
sentences.extend(split_sentence(sentence, max_characters))
|
156 |
+
else:
|
157 |
+
sentences.append(sentence)
|
158 |
+
|
159 |
+
return sentences
|
160 |
+
|
161 |
+
|
162 |
+
def split_sentence(sentence: str, max_characters: int) -> list[str]:
|
163 |
+
"""
|
164 |
+
Returns a split sentences. The split point is the nearest comma to the middle
|
165 |
+
of the sentence, if there is no comma then a space is used or just the middle. If the
|
166 |
+
remaining sentences are still too long, another iteration is run
|
167 |
+
"""
|
168 |
+
# Get index of each comma
|
169 |
+
sentences = []
|
170 |
+
commas = [i for i, c in enumerate(sentence) if c == ',']
|
171 |
+
|
172 |
+
# No commas, search for spaces
|
173 |
+
if len(commas) == 0:
|
174 |
+
commas = [i for i, c in enumerate(sentence) if c == ' ']
|
175 |
+
|
176 |
+
# No commas or spaces, split it in the middle
|
177 |
+
if len(commas) == 0:
|
178 |
+
sentences.append(sentence[:len(sentence) // 2])
|
179 |
+
sentences.append(sentence[len(sentence) // 2:])
|
180 |
+
return sentences
|
181 |
+
|
182 |
+
# Nearest index to the middle
|
183 |
+
split_point = min(commas, key=lambda x: abs(x - (len(sentence) // 2)))
|
184 |
+
|
185 |
+
if sentence[split_point] == ',':
|
186 |
+
left = sentence[:split_point]
|
187 |
+
right = sentence[split_point + 2:]
|
188 |
+
else:
|
189 |
+
left = sentence[:split_point]
|
190 |
+
right = sentence[split_point + 1:]
|
191 |
+
|
192 |
+
if len(left) > max_characters:
|
193 |
+
sentences.extend(split_sentence(left, max_characters))
|
194 |
+
else:
|
195 |
+
sentences.append(left)
|
196 |
+
if len(right) > max_characters:
|
197 |
+
sentences.extend(split_sentence(right, max_characters))
|
198 |
+
else:
|
199 |
+
sentences.append(right)
|
200 |
+
|
201 |
+
return sentences
|
main.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
load_dotenv()
|
4 |
+
|
5 |
+
import model
|
6 |
+
# Get TTS model
|
7 |
+
if not os.path.exists('tts_model'):
|
8 |
+
model.download_model()
|
9 |
+
|
10 |
+
import audio
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
|
14 |
+
def update_widget():
|
15 |
+
return gr.Button(value='Creating audio...', interactive=False)
|
16 |
+
|
17 |
+
|
18 |
+
with gr.Blocks() as app:
|
19 |
+
text = gr.Textbox(label="Text")
|
20 |
+
button = gr.Button(value='Create audio')
|
21 |
+
|
22 |
+
audio_file = gr.Audio(visible=False)
|
23 |
+
|
24 |
+
button.click(
|
25 |
+
update_widget, None, button
|
26 |
+
).then(
|
27 |
+
audio.get_audio, text, audio_file
|
28 |
+
)
|
29 |
+
|
30 |
+
app.queue()
|
31 |
+
app.launch(debug=True, auth=(os.environ.get('SPACE_USERNAME'), os.environ.get('SPACE_PASSWORD')))
|
model.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
from tqdm import tqdm
|
4 |
+
|
5 |
+
|
6 |
+
def _download_file(url, destination):
|
7 |
+
response = requests.get(url, stream=True)
|
8 |
+
total_size_in_bytes = int(response.headers.get('content-length', 0))
|
9 |
+
block_size = 1024
|
10 |
+
|
11 |
+
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
|
12 |
+
|
13 |
+
with open(destination, 'wb') as file:
|
14 |
+
for data in response.iter_content(block_size):
|
15 |
+
progress_bar.update(len(data))
|
16 |
+
file.write(data)
|
17 |
+
|
18 |
+
progress_bar.close()
|
19 |
+
|
20 |
+
|
21 |
+
def download_model():
|
22 |
+
# Define files and their corresponding URLs
|
23 |
+
files_to_download = {
|
24 |
+
'LICENSE.txt': 'https://huggingface.co/coqui/XTTS-v2/resolve/v2.0.2/LICENSE.txt?download=true',
|
25 |
+
'README.md': 'https://huggingface.co/coqui/XTTS-v2/resolve/v2.0.2/README.md?download=true',
|
26 |
+
'config.json': 'https://huggingface.co/coqui/XTTS-v2/resolve/v2.0.2/config.json?download=true',
|
27 |
+
'model.pth': 'https://huggingface.co/coqui/XTTS-v2/resolve/v2.0.2/model.pth?download=true',
|
28 |
+
'vocab.json': 'https://huggingface.co/coqui/XTTS-v2/resolve/v2.0.2/vocab.json?download=true',
|
29 |
+
}
|
30 |
+
|
31 |
+
if not os.path.exists("tts_model"):
|
32 |
+
os.makedirs("tts_model")
|
33 |
+
|
34 |
+
# Download files if they don't exist
|
35 |
+
print("[COQUI TTS] STARTUP: Checking Model is Downloaded.")
|
36 |
+
for filename, url in files_to_download.items():
|
37 |
+
destination = f'tts_model/{filename}'
|
38 |
+
print(f"[COQUI TTS] STARTUP: Downloading {filename}...")
|
39 |
+
_download_file(url, destination)
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
requests==2.31.0
|
2 |
+
tqdm==4.66.1
|
3 |
+
nltk==3.8.1
|
4 |
+
deepspeed==0.12.3
|
5 |
+
torch==2.1.1
|
6 |
+
torchaudio==2.1.1
|
7 |
+
TTS==0.21.2
|
8 |
+
google-cloud-storage==2.13.0
|
9 |
+
python-dotenv==1.0.1
|
10 |
+
gradio==4.15.0
|
11 |
+
numpy==1.22.0
|
12 |
+
transformers==4.36.0
|