vmoras's picture
Fix folder paths
4df6e8a
raw
history blame
5.87 kB
import re
import os
import nltk
import torch
import pickle
import torchaudio
import numpy as np
from TTS.tts.models.xtts import Xtts
from nltk.tokenize import sent_tokenize
from TTS.tts.configs.xtts_config import XttsConfig
def _load_array(filename):
""" Opens a file a returns it, used with numpy files """
with open(filename, 'rb') as f:
return pickle.load(f)
os.environ['COQUI_TOS_AGREED'] = '1'
# Used to generate audio based on a sample
nltk.download('punkt')
model_path = os.path.join("tts_model")
config = XttsConfig()
config.load_json(os.path.join(model_path, "config.json"))
model = Xtts.init_from_config(config)
model.load_checkpoint(
config,
checkpoint_path=os.path.join(model_path, "model.pth"),
vocab_path=os.path.join(model_path, "vocab.json"),
eval=True,
use_deepspeed=True,
)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model.to(device)
# Speaker latent
path_latents = 'assets/gpt_cond_latent.npy'
gpt_cond_latent = _load_array(path_latents)
# Speaker embedding
path_embedding = 'assets/speaker_embedding.npy'
speaker_embedding = _load_array(path_embedding)
def get_audio(text: str, language: str = 'es', saving_path: str = 'output') -> None:
"""
Creates an audio
:param text: text to convert to audio
:param language: 'es', 'en' or 'pt', language used for the audio file
:param saving_path: path to save the audio
:return: None
"""
# Creates an audio with the answer and saves it as output.wav
_save_audio(text, language, saving_path)
return
def _save_audio(text: str, language: str, path_audio: str) -> None:
"""
Splits the text into sentences, clean and creates an audio for each one, then concatenates
all the audios and saves them into a file.
:param text: input text
:param language: language used in the audio
:param path_audio: saving path of the audio
:return: None
"""
# Split the answer into sentences and clean it
sentences = _get_clean_text(text, language)
# Get the voice of each sentence
audio_segments = []
for sentence in sentences:
audio_stream = _get_voice(sentence, language)
audio_stream = torch.tensor(audio_stream)
audio_segments.append(audio_stream)
# Concatenate and save all audio segments
concatenated_audio = torch.cat(audio_segments, dim=0)
torchaudio.save(f'{path_audio}.wav', concatenated_audio.unsqueeze(0), 24000)
return
def _get_voice(sentence: str, language: str) -> np.ndarray:
"""
Gets a numpy array with a wav of an audio with the given sentence and language
:param sentence: input sentence
:param language: languages used in the audio
:return: numpy array with the audio
"""
out = model.inference(
sentence,
language=language,
gpt_cond_latent=gpt_cond_latent,
speaker_embedding=speaker_embedding,
temperature=0.1
)
return out['wav']
def _get_clean_text(text: str, language: str) -> list[str]:
"""
Splits the text into smaller sentences using nltk and removes links.
:param text: input text for the audio
:param language: language used for the audio ('es', 'en', 'pt')
:return: list of sentences
"""
# Remove the links in the audio and add another sentence
if language == 'en':
clean_answer = re.sub(r'http[s]?://\S+', 'the following link', text)
max_characters = 250
elif language == 'es':
clean_answer = re.sub(r'http[s]?://\S+', 'el siguiente link', text)
max_characters = 239
else:
clean_answer = re.sub(r'http[s]?://\S+', 'o seguinte link', text)
max_characters = 203
# Change the name from Bella to Bela
clean_answer = clean_answer.replace('Bella', 'Bela')
# Remove Florida and zipcode
clean_answer = re.sub(r', FL \d+', "", clean_answer)
# Split the answer into sentences with nltk and make sure they are shorter than the maximum possible
# characters
split_sentences = sent_tokenize(clean_answer)
sentences = []
for sentence in split_sentences:
if len(sentence) > max_characters:
sentences.extend(_split_sentence(sentence, max_characters))
else:
sentences.append(sentence)
return sentences
def _split_sentence(sentence: str, max_characters: int) -> list[str]:
"""
Used when the sentences are still to long. The split point is the nearest comma to the middle
of the sentence, if there is no comma then a space is used or just the middle. If the
remaining sentences are still too long, another iteration is run.
:param sentence: sentence to be split
:param max_characters: max number of characters a sentence can have
:return: list of sentences
"""
# Get index of each comma
sentences = []
commas = [i for i, c in enumerate(sentence) if c == ',']
# No commas, search for spaces
if len(commas) == 0:
commas = [i for i, c in enumerate(sentence) if c == ' ']
# No commas or spaces, split it in the middle
if len(commas) == 0:
sentences.append(sentence[:len(sentence) // 2])
sentences.append(sentence[len(sentence) // 2:])
return sentences
# Nearest index to the middle
split_point = min(commas, key=lambda x: abs(x - (len(sentence) // 2)))
if sentence[split_point] == ',':
left = sentence[:split_point]
right = sentence[split_point + 2:]
else:
left = sentence[:split_point]
right = sentence[split_point + 1:]
if len(left) > max_characters:
sentences.extend(_split_sentence(left, max_characters))
else:
sentences.append(left)
if len(right) > max_characters:
sentences.extend(_split_sentence(right, max_characters))
else:
sentences.append(right)
return sentences